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Universal Decoding for Channels with Memory
Meir Feder,Senior Member, IEEE, and Amos Lapidoth,Member, IEEE

Abstract—A universal decoder for a parametric family of
channels is a decoder whose structure depends on the family
but not on the individual channel over which transmission takes
place, and it yet attains the same random-coding error exponent
as the maximum-likelihood receiver tuned to the channel in use.
The existence and structure of such decoders is demonstrated
under relatively mild conditions of continuity of the channel law
with respect to the parameter indexing the family. It is further
shown that under somewhat stronger conditions on the family
of channels, the convergence of the performance of the universal
decoder to that of the optimal decoder is uniform over the set of
channels. Examples of families for which universal decoding is
demonstrated include the family of finite-state channels and the
family of Gaussian intersymbol interference channels.

Index Terms—Compound channel, error exponent, finite-state
channel, Gilbert–Elliott channel, intersymbol interference, ran-
dom coding, universal decoding.

I. INTRODUCTION AND DEFINITIONS

T HIS paper addresses the problem of designing a receiver
for digital communication over an unknown channel.

The channel over which transmission is to be carried out is
unknown to the receiver designer, and the designer only knows
that the channel belongs to some family of channels

(1)

where is some index set. Had the channel been known in ad-
vance, the designer could have used the maximum-likelihood
(ML) decoding rule to minimize the average probability of
error. This rule, however, cannot be used in our scenario as it
typically depends on the channel law, and the ML decoding
rule is thus typically different for different members of the
family .

In spite of the above, we shall show in this paper that under
fairly mild conditions on the family of channels, there exists
a universal decoder for that performs asymptotically as well
as the ML decoder and yet does not require knowledge of the
channel over which transmission is carried out. The proposed
decoder thus not only competes favorably with other detectors
that are ignorant of the channel over which transmission is
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carried out, but even performs asymptotically as well as the
best decoder that could have been designed had the channel
law been known.

It should be stressed that no prior distribution is assumed
on , and the universal decoder is required to perform
asymptotically as well as the ML decoder on any channel

.
Before we define asymptotic performance and in order to

motivate the definition, we shall first briefly describe the
use of training sequences to facilitate communication over
an unknown channel, a use which is very common in many
wireless systems [1], [2]. In order to help the receiver identify
the channel in use, the transmitter sends a known sequence
of symbols over the channel. This known input sequence is
called “training sequence.” Since the sequence is known at
the receiver, the receiver can estimate the channel law by
studying the statistics of the received symbols corresponding to
the known input sequence. The receiver then typically decodes
the rest of the transmission by performing ML decoding with
respect to the estimated channel law. It should be stressed that
the transmitter itself does not know the channel law and cannot
therefore convey this information to the receiver.

The use of training sequences has some drawbacks. First,
there is a mismatch penalty. Because the training sequences are
of limited length, the channel estimate formed at the receiver
is imprecise, and the data sequence is thus decoded according
to an incorrect likelihood function. This results in an increase
in error rates [3], [4] and in a decrease in capacity [5]–[10].
Secondly, there is a penalty in throughput, because the training
sequences carry no information. This penalty is of course
worse the longer the training sequence is as compared to the
length of the data sequence. We thus see that increasing the
length of the training sequences results in a hit in throughput,
whereas decreasing its length reduces the accuracy of the
channel estimation and thus results in a more severe loss in
error rates and in the capacity due to the decoding mismatch.

To overcome this tradeoff one might wish to choose the
length of the sequence sufficiently large to ensure precise
channel estimation, and then choose the data block sufficiently
long so as to make the loss in throughput small. This approach,
however, seldom works due to delay constraints, as it results
in a large delay that the data symbols suffer. This tradeoff
between delay and error rates motivates the definition of a
universal decoder as one that attains the same asymptotic
tradeoff between delay and error rates as the optimal ML
receiver.

For most channels of interest, including memoryless chan-
nels and indecomposable finite-state channels [11], the best
tradeoff between achievable error rates and delay (as measured
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by blocklength) when ML decoding is employed is exponen-
tial, with the error rate decreasing exponentially with the delay
(blocklength) , where the exponent depends on the channel
law and on the rate of transmission, and is typically positive for
rates below channel capacity. While finding codes that achieve
this performance is typically very difficult, one can often
demonstrate their existence by a random-coding argument, i.e.,
by showing that the average (over codebooks and messages)
probability of error of a randomly chosen codebook can exhibit
a good exponential tradeoff between error rates and delay.

With these observations in mind, we define a universal
sequence of decoders as a sequence of decoders that achieves
the same random-coding error exponent as the ML decoder,
for every channel in the family. To make this more precise we
need the following setup.

Consider a family of channels (1) defined over the common
input alphabet and the common output alphabet. For any

the law maps every input sequence

to a corresponding probability law on . Notice that we
are omitting the dependence on the blocklength: strictly
speaking, is thus a sequence of mappings, one for
each blocklength .

Given a rate- blocklength- codebook

(2)

a decoder is a mapping

that maps every received sequence to an index of
some codeword. Strictly speaking, the mappingdepends,
of course, not only on the received sequence but also on the
codebook, but to avoid cumbersome notation we do not make
this explicit. It should however be noted that throughout this
paper we assume that the codebook, even when drawn at
random, is known to both transmitter and receiver, and that
the decoding is allowed, and indeed should, depend on the
codebook.

If all the codewords of a code are used equiprobably (as
we shall assume throughout) then the average (over messages)
probability of error incurred when the code-
book is used over the channel with the decoder

, is given by

(3)

When random coding is considered, the codebookis
drawn at random by choosing its codewords independently
and uniformly1 over some set . The set will be
referred to as theinput set. We shall let denote the
average (over messages and codebooks) probability of error

1Throughout this paper we restrict ourselves to random coding where
the codewords are drawn uniformly over the input setBn, thus excluding
independent and identically distributed (i.i.d.) random coding. However, since
Bn can be arbitrary and could, for example, be the set of all sequences of a
given type, there is no loss in optimality in this restriction; see [12].

that is incurred when such a random codebook is used over
the channel and is decoded using the decoder. In
other words, is just the average of
over the choice of codebooks.

Given a known channel and a codebook , the
decoder that minimizes the average probability of error is the
ML decoder [13]. A decoder is said to be ML for the channel

if

(4)

Notice that the ML decoder is not unique as different ML
receivers may resolve ties in the likelihood function in different
ways. All ML receivers, however, give rise to the same average
probability of error for any code . We denote this average
probability of error by . Thus
is the average (over messages) probability of error incurred
when the codebook is used over the channel
and ML decoding tuned to is employed. We similarly use

to denote the analogous expression for the average
(over messages and codebooks) probability of error for a
randomly chosen codebook.

We are now in a position to define weak random-coding
universality, and to make precise the notion that the universal
decoder performs asymptotically as well as the ML receiver
tuned to the channel in use.

Definition 1: A sequence of decoders is said to be
random-coding universal(or random-coding weakly universal)
for the family and the input-set sequence

, if

(5)

Notice that in our definition of a weak random-coding
universal decoder we do not require that the decoder attain
the same asymptotic performance as the ML decoder forany
code. This requirement is too restrictive, as there are some
codes that cannot be decoded universally even in well-behaved
families of channels. For example, if is the family of all
binary-symmetric channels (BSC) with crossover probability

then, as we shall show later, a weak random-coding
universal decoder can be found, and yet there are some singular
codes that are not amenable to universal decoding. Indeed,
any binary code that is closed under Hamming complement
(component-wise negation) is not amenable to reliable univer-
sal decoding.

We will, however, show that while not every code is
amenable to universal decoding, there are some very good
codes that are. More specifically, we will show that under
relatively mild regularity conditions on the family of channels
one can approach the random-coding error exponent (error-rate
versus delay) with sequences of (deterministic) codes that are
amenable to universal decoding. This motivates the following
definition of weak deterministic-coding universal decoders.

Definition 2: A sequence of decoders is said to be
deterministic-coding universal(or deterministic-coding weakly
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universal) for the family and the input-
set sequence if there exists a sequence of rate-
blocklength- codebooks , , such that

(6)

It is interesting to note that even for very simple families
of channels, the training sequence approach is not universal.
For example, it is shown in Appendix I that even if the
family of channels consists of only two channels, say a
binary-symmetric channel with crossover probability and
a binary-symmetric channel with crossover probability ,
the training sequence approach is not universal. The reason
is that unless the receiver correctly identifies the channel in
use, it is almost bound to err, and for the receiver to identify
the channel with exponentially small probability of error the
length of training sequence must be linear in the blocklength,
resulting in a loss in the error exponent.

The issue of universal decoding is intimately related to the
problem of determining the compound channel capacity of a
family of channels [14]–[17]. A rate is said to be achievable
for the family of channels if for any given and every
sufficiently large blocklength there exists a blocklength-
rate- codebook and a decoder such that

The compound channel capacity of the family is
defined as the supremum of all achievable rates.

In a certain sense, finding the sequence of decodersfor
the compound channel is easier than finding a sequence of
universal decoders because in the definition of the compound
channel capacity no attention is paid to error exponents: for
example, if the family of channels is a subset of the class of
discrete memoryless channels (DMC) then a training sequence
approach to the problem will probably work. On the other
hand, the requirements on the decoders for the compound
channel are more stringent since must have uniformly
good performance over all channels in the family. With the
compound channel in mind we thus define the notion of strong
universality. The adjective “strong” refers to the uniformity of
the convergence. Once again we distinguish between random-
coding universality and deterministic-coding universality:

Definition 3:A sequence of decoders is said to beran-
dom-coding strongly universalfor the family
and the input sets if the convergence (5) is uniform
over , i.e., if

(7)

Definition 4:The sequence of decoders is said to
be deterministic-coding strongly universalfor the family

and the input sets if there exists a
sequence of rate- blocklength- codebooks , ,
for which the convergence in (6) is uniform over, i.e.,

(8)

We shall demonstrate in Theorem 2 that under fairly mild
conditions on the family of channels, one can demonstrate
strong deterministic-coding universality. Once such univer-
sality is established, the achievability of a rate for the
compound channel can be demonstrated by showing that

Notice that the above expression involves only random coding
(and not specific codes), and more importantly, it only involves
optimal ML decoding.

This approach to the compound channel is explored in [12]
where it is used to compute the compound channel capacity
of a class of finite-state channels (FSC), a class of channels
that, as we shall show, admits strong deterministic-coding
universality.

Note that a receiver need not be strongly universal in order
to achieve the compound channel capacity of a family. For
example, if is a convex family of memoryless channels, then
the compound channel capacity of the family can be achieved
using the ML receiver tuned to the channel that achieves the
saddle-point for the mutual information functional [7], [18].
On other channels in the family, however, this decoder does
not typically attain the same random-coding error exponent as
the ML decoder, and this decoder is thus not universal by our
definition.

Our various definitions of universal decoding and our ap-
proach to the problem have been influenced by previous
work on the problem, and particularly by [16] and [19].
In the former work the problem of universal decoding is
studied for memoryless channels over finite input and output
alphabets, and the definition of universality is very close in
nature to what we refer to as “strong deterministic-coding
universality.” It is shown there that the maximum (empirical)
mutual information (MMI) decoding rule, first suggested by
Goppa [20], is strongly deterministic-coding universal for any
family of memoryless channels defined over finite input and
output alphabets. If the family consists of the family of
all discrete memoryless channels over the alphabetsand

, then the MMI algorithm is equivalent to a generalized
ML decoding rule where given a received sequence, the
codeword receives the score .

In [19], Ziv studied universal decoding for the class of finite-
state channels where the next state is a deterministic—but
unknown—function of the previous state, input, and output.
For this family of channels Ziv proved that if random coding
is carried out by choosing the codewords independently and
uniformly over the set of sequences of a given composition
(type), then one can find a strong random-coding universal de-
coder for the family2. The decoder that Ziv proposed is based
on the Lempel-Ziv algorithm from source coding. Additional
work on universal decoding appeared in [21] where weak
random-coding universality was demonstrated for a family of
memoryless Gaussian channels with an unknown deterministic
interference of a special parametric form.

2Ziv only claimed weak random-coding universality, but his proof demon-
strates strong random-coding universality.
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Our work extends the previous work on universal decoding
in several ways. First, we study universal decoding not only
for DMC’s, as in [16], but also for channels with memory. Our
results are fairly general and include the family of all finite-
state channels [11], [22], and not only those with deterministic
transitions, which were studied in [19]. In particular, our
results are valid for the class of all Gilbert–Elliott channels
[23]–[26], which have random transitions and are often used
to model time-varying channels. In addition, we do not require
that the benchmark random coding be done over the set of
sequences of a given type as in [19]: as long as the codewords
are chosen uniformly over some set , this set can be
arbitrary. This generalization can be important for channels
for which the input distribution that achieves capacity is
not independent and identically distributed (i.i.d.). Also, the
universality that we demonstrate is not only strong random-
coding universality as in [19] but also strong deterministic-
coding universality. Our results also extend to more general
families of channels, including those with infinite input and
output alphabets. For example, we show that the set of
all additive Gaussian noise intersymbol interference (ISI)
channels with a fixed number of ISI terms of boundednorm
admits strong universal decoding; this problem was posed in
[21].

Notice that as in [19] we only consider random coding in
which the codewords are drawn independently and uniformly
over some input set. In this respect our analysis excludes the
classical random-coding approach where the components of
each codeword are drawn independently according to some
marginal distribution , [11]. For most applications this is
not a serious drawback as the random-coding error exponents
that are achieved by choosing the codewords uniformly over a
type are usually no worse than those achieved by choosing the
codewords according to the product distribution corresponding
to that type, see [27] for the Gaussian case and [12] for the
more general case.

In some sense, the problem of universal channel decoding
is dual to the problem of universal coding for sources of
unknown law. It should, however, be noted that no feedback
link is assumed in our problem, and the transmitter cannot
therefore use a signaling scheme that depends on the channel
in use. That is why we cannot typically hope to communicate
at channel capacity (of the channel in use), since different
channels in the family will typically have different capacities
and different capacity-achieving input distributions.

The rest of the paper is organized as follows. In the next
section we state the paper’s main results. In Section III we
discuss how ML decoders can be described using ranking
functions and how every ranking naturally defines a decoder.
The main result of that section is a description of how a
finite number of different decoders (ranking functions) can be
merged to obtain a new decoder that performs almost as well as
each of those decoders, see Lemma 1. This construction plays
a crucial role in the proof of the existence of weak universal
decoders, which are treated in Section IV. Strong universal
decoders are studied in Section V. All these sections deal with
the finite-alphabet case, and in Section VI we extend these
results to the infinite-alphabet case. Section VII contains some

applications of the results to specific families of channels,
particularly the family of DMC’s, finite-state channels, and
intersymbol interference channels. That section also describes
an example of a family of channels that admits weak universal
decoding but not strong universal decoding. The paper is
concluded with a brief summary and discussion in Section
VIII.

II. THE MAIN RESULTS

Before we can state the main result on weak universality we
need the following definition of a separable family. Loosely
speaking, a family is separable if there exists a countable set

that is “dense” in in a sense that is made precise next.

Definition 5: We shall say that the family of channels (1)
is (weakly) separablefor the input sets , , if
there exists a sequence that is “dense” in the
family in the sense that

(9)

In other words, for every and every , there exists
some and some so that for all

The following theorem demonstrates that if the family of
channels is separable for the input sets , then there exist
weak random-coding and weak deterministic-coding universal
decoders for the family.

Theorem 1: If a family of channels (1) defined over com-
mon finite input and output alphabets is separable for the
input sets , then there exists a sequence of decoders
that are random-coding and deterministic-coding universal for
the family. Thus

and there exists a sequence of rate-blocklength- codes
such that

The separability condition is not enough to guarantee the
existence of strong universal decoders, as demonstrated in
Section VII-D. For this we need a stronger notion, which we
have termed “strong separability.” Loosely speaking, a family
is strongly separable if for any blocklength there exists a
subexponential number of channels such that the law
of any channel in the family can be approximated by one of
these channels. The approximation is in the sense that except
for rare sequences, the normalized log-likelihood of an output
sequence given any input sequence is similar under the two
channels. More precisely
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Definition 6: A family of channels
defined over common finite input and output alphabets
is said to bestrongly separablefor the input sets ,

, if there exists some that upper-bounds
the error exponents in the family, i.e., that satisfies

(10)

such that for every and blocklength , there exists a
subexponential number (that may depend on and on
) of channels

(11)

that well approximate any in the following sense: For
any there exists , so that

(12)

and

(13)

A good candidate for is as is lower-
bounded by the random-coding pairwise error probability (the
probability of error corresponding to the case where the
codebook consists of only two codewords) and the latter is
lower-bounded by corresponding to the probability
that the two codewords are identical. Note that we assume
throughout that if the transmitted codeword and some other
codeword are identical then an error results.

Theorem 2: If a family of channels (1) defined over com-
mon finite input and output alphabets is strongly sep-
arable for the input sets , then there exists a sequence
of decoders that are random-coding and deterministic-
coding strongly universal for the family. Thus

and there exists a sequence of rate-blocklength- codes
such that

Many of the families of channels arising in digital com-
munications are strongly separable, and thus admit strong
universal decoding. We shall, for example, show that in
addition to the class of all discrete memoryless channels over
finite alphabets, the set of all finite-state channels [11] defined
over finite common input, output, and state alphabets
respectively, is strongly separable. We shall thus deduce from
Theorem 2 the following

Theorem 3: The set of all finite-state channels defined over
common finite input, output, and state alphabets and
parameterized by the pair of stochastic matrices
and initial states where

and

admits strong deterministic-coding and random-coding univer-
sal decoding. Here and it is important to note
that the receiver is assumed ignorant of the state sequence.

If the number of states is finite but unknown, we can guar-
antee weak random-coding and deterministic-coding universal
decoding.

Our results can be extended to infinite alphabets; see Section
VI where we prove a theorem analogous to Theorem 2 for
infinite alphabets. As a corollary, we can prove, for example,
the following

Theorem 4: Consider the discrete-time Gaussian intersym-
bol interference (ISI) channel where the outputat time
is given by

where is the input at time , the sequence is a
sequence of i.i.d. Normal random variables of mean zero
and unit variance, and are the ISI coefficients.
Suppose that the ISI coefficients are unknown to the receiver,
but that their number3 and an upper bound on their
norm are known, i.e.,

(14)

If the input sets from which the codewords are drawn
satisfy an average power constraint

(15)

then a strong random-coding and deterministic-coding uni-
versal decoder exists. If the number of ISI coefficientsor
an upper bound on their norm is unknown then we can
only guarantee weak random-coding and deterministic-coding
universality.

III. M ERGING DECODERS

The ML decoder is not unique since ties in the likelihood
function can be resolved in different ways without changing
the average probability of error. Condition (4) does not there-
fore completely specify the decoding function. A more precise
description of the ML decoder that also specifies the manner

3Since we do not require thathJ be nonzero,J may be overestimated, and
in this sense the receiver only needs an upper bound on the ISI memory.
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by which ties are resolved is as follows. Assume that all the
codewords are in some set of size

and consider a ranking function

that given every received sequencemaps the sequence
to its ranking among all the sequences in. The

mapping thus specifies a complete order from
to on all the sequences in , i.e., for any
we have that is a one-to-one mapping of onto

. It is further assumed that ranks the
sequences according to decreasing order of likelihood, i.e.,

(16)

where the sequence most likely (given the received sequence
) is ranked highest, i.e., its rank is. Given a codebook

the ML decoder that is determined by the ranking
function and defined by

iff (17)

(If no such exists, as can only happen if some of the code-
words are identical, we declare an error.) Thus given a received
sequence , the ML receiver determined by declares
that the transmitted codeword was if maximizes

among all the codewords in , and in the
case that this maximum is achieved by several codewords, it
prefers the one that is ranked highest by .

It should be noted that any ranking function , i.e.,
any function

such that for any the function is one-to-
one and onto , defines a decoder in a manner
completely analogous with (17). Thus given a codebook

and given a received sequence

iff (18)

We shall find it important to study the performance that
results when a codebook is used over a channel
and is decoded using a mismatched ML receiver that is tuned
to a different channel, say . Strictly speaking,
the resulting average probability of error should, by (3), be
denoted by , however, to simplify notation,
we denote this average probability of error by

and the corresponding average probability of error av-
eraged over randomly selected codebooks by .
Thus denotes the average (over messages)
probability of error incurred when the codebookis used over
the channel and is decoded using an ML decoder
tuned to the channel is similarly
defined.

The following construction will play a central role in this
study. Given decoders that are based on the
ranking functions , as in (18), we can define
the merged decoder by constructing its ranking function

in the following way: Given a received sequence
the ranking function ranks number one the sequence
in that ranks highest. It then ranks second the
sequence that ranks highest (unless it is equal to the
sequence ranked highest by in which case it skips to
consider the sequence that ranks highest), followed
by the sequence that ranks highest, etc. After the
first rankings of all the decoders
have been considered we return to and consider the
sequence in ranked second, followed by the sequence that

ranks second, etc. In all cases, if we encounter a
sequence that has already been ranked we simply skip it and
move on to the next decoder.

This construction guarantees that if a sequence
is ranked th by the th decoder then is ranked

or higher by , i.e.,

implies

(19)

Equation (19) can actually serve as a definition for the
merging operation, i.e., the construction of from

.
Crucial to our analysis is the observation that with this

construction

(20)

which follows immediately from (19). The following lemma
demonstrates that on any channel the performance
of the merged decoded cannot be much worse than the
performance of each of the decoders .

Lemma 1: Given decoders there exists a
decoder (which can be taken as the merging of these
decoders) such that

Proof: If the codewords of a codebook are drawn in-
dependently and uniformly over the set , and if
a decoder that is based on the ranking function is
used, then the average probability of error incurred
over the channel is given by [19]

(21)

where

(22)

is the conditional probability of error given that the transmitted
codeword is , the received sequence is, and the decoder
being used is . Equation (22) follows from the observation
that the codewords are drawn independently and uniformly
over and that if is the correct codeword and is the
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received sequence then an error occurs only if some other
codeword is ranked higher than , i.e., if

. Notice that does not depend on
the channel over which transmission is carried out,
but only on the correct codeword, the received sequence
and the decoder .

To continue with our proof we need the following technical
lemma, which is proved in Appendix II.

Lemma 2: The following inequalities hold:

1) The function

satisfies

where throughout this paper .
2) If and are two nonnegative sequences

then

(23)

where for , and .
3) If and are nonnegative random variables then

where , unless in which case .

To continue with the proof of Lemma 1 consider two
decoders, and , that are based on the ranking functions

and , respectively. It follows from (22) and
from the first part of Lemma 2 that

(24)

and hence

(25)

The equality follows from (21), the first inequality follows
by the third part of Lemma 2, and the last inequality follows
from (24) by noting that

since for any the functions and
are both one-to-one mappings onto . Inequality
(25) is a refined version of an inequality given in [19]. Its
importance is that it relates differences in ranking functions to
differences in random-coding error performance.

The proof is now concluded by noting that if is obtained
by merging the decoders then by (20)

As pointed out in [28], the problems of universal decoding
and universal ordering are in some sense dual. In this sense
Lemma 1 is the dual of [28, Proposition 1].

To prove Lemma 1 we have introduced the notion of
merging decoders. An alternative approach might have been to
consider the generalized likelihood ratio decoder that given
channels and a received sequencedeclares that
codeword was transmitted only if

It turns out, however, that this approach, in general, fails. For
a counterexample see [29].

Lemma 1 can be used to demonstrate the existence of a
weak (or strong) random-coding universal decoder for the case
where the family is finite, i.e., when ,
by choosing the universal decoderto be the decoder that
is obtained by merging the ML decoders corresponding to

. This approach can even demonstrate weak uni-
versality (but not strong universality) when is countable:
one can order and consider the sequence of decoders
where is the merging of the ML decoders of the first(or
any integer-valued subexponential function of the blocklength

that is increasing monotonically to infinity) channels in
. The loss in performance is at most a factor of(i.e.,

subexponential) for all sufficiently large (to guarantee that
the true channel is among the firstchannels in ). In the
next section we shall demonstrate how this approach can be
applied to noncountable families of channels.

IV. WEAK UNIVERSALITY

In this section we shall build on Lemma 1 to construct
a universal decoder for families that are not countable. The
idea is to construct the decoder for blocklengthby merging
the first ML decoders for the channels where

are the first channels in a countable sequence of
channels that is dense in in the sense of (9).

A key role will be played by the following lemma that
demonstrates that if is close to then

. While the proof of the lemma
is not complicated, the lemma is not entirely trivial be-
cause even if is close to the ML
decoder corresponding to can be very different from the
one corresponding to . This can be seen by considering
the case of the family of binary-symmetric channels (BSC)
parameterized by their crossover probability. Ifcorresponds
to crossover probability and corresponds to a
crossover probability of then even though and are
close, the two ML decoders are very different: one ML decoder
decodes according to minimum Hamming distance and the
other according to maximum Hamming distance. Nevertheless,

is a continuous function of and
so the result is to be expected.
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Lemma 3: If

then

and

Proof: To make the proof of the lemma more transparent,
let us break up the assumptions of the lemma into two separate
assumptions.

(26)

and

(27)

We now have

(28)

(29)

which completes the proof of the first claim of the lemma.
The first inequality follows from (27), the second inequality
follows from the optimality of the ML decoder, and the third
inequality follows from (26). All equalities follow from (21)
and the fact that the conditional error probability, which is
defined in (22), depends on , and but not on the channel

.
The second claim of the lemma follows from (28) by noting

that by the optimality of the ML rule

We are now in a position to prove Theorem 1.
Proof: Let be the sequence of channels that

satisfies (9), and let be arbitrary but fixed. It follows
from (9) that for every there exists some positive integer

(which depends on ) and some (which also depends
on ) such that

Let the decoder be constructed by merging the first
ML decoders corresponding to where for now

. For all sufficiently large blocklength we have
that and the ML decoder is among the
decoders from which is constructed. It,
therefore, follows from Lemma 1 that for such sufficiently
large

(30)

If, in addition, is sufficiently large so that then by
Lemma 3

(31)

Combining (30) and (31) we have that for all sufficiently
large

(32)

and the first part of the theorem involving random-coding
universality now follows by noting that is subex-
ponential.

The second part of the theorem establishing deterministic-
coding universality will now follow once we show that if
the family of channels is separable then random-coding weak
universality implies deterministic-coding weak universality,
which is the content of the following lemma, Lemma 4.

Inspecting the proof we see that some of the conditions
of Theorem 1 can be weakened. First we can replace the
separability condition with a weaker form that requires that
there exist a sequence and a subexponential integer-
valued monotonically increasing function such that for
any

Such a weaker condition could be useful when studying
channels with infinitely many internal states where the number
and effect of the internal states grows moderately with the
blocklength . This approach could be also useful when the
family of channels is more naturally parameterized with an
infinite number of parameters as would, for example, be the
case if a natural parameter is the autocorrelation function of
some random process.

Secondly, if the random-coding error exponents of the
channels in the family are uniformly bounded then we may
exclude some sets of pairs from the supremum in (9)
provided that the sets have a probability that is negligible with
respect to the best error exponent in the family. We adopt this
approach in dealing with strong separability.

Lemma 4: If the family of channels is separable then
random-coding weak universality implies deterministic-coding
weak universality.

Proof: Let be random-coding weakly universal for
the family and input-sets , and let

be a sequence of laws that is dense in the sense of
(9). It follows from the weak random-coding universality of
the sequence that for any and any there
exists some such that for all

(33)
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Let denote the event that a rate-blocklength- randomly
chosen codebook whose codewords are drawn indepen-
dently and uniformly over the set satisfies

It follows from (33) and Markov’s inequality that

(34)

We thus conclude from (34) and the union of events bound that

where we use to denote the set complement of the set
. We can thus conclude that for there exists a

codebook such that

(35)

Choosing and letting we can
construct a sequence of codebooks so that

(36)

To conclude the proof we show that the validity of (8) for the
dense sequence , i.e., (36), implies its validity for any .
This can be seen by noting that if

(37)

then by Lemma 3

(38)

and by noting that (37) also implies that

Indeed, for any and decoder

(39)

(40)

where , i.e., the sequences in that are decoded
by to the th message, and is its complement.

V. STRONG UNIVERSALITY

The following Lemma will be useful in the study of strong
universality.

Lemma 5: Let and be two
channels that satisfy

then for any code and decoder

and

Proof: Given a codeword let

and let be the set of all output sequences that
the decoder decodes to the codeword , and the set
complement of . We now have

It now follows by choosing to be the ML decoder with
respect to the law and by averaging over the codebook
that

from which the second part of the lemma follows by noting
that by the optimality of the ML decoder

With this lemma we can now prove Theorem 2.
Proof: Let be arbitrary but sufficiently small to

guarantee that

where is the constant appearing in Definition 6 (strong
separability), and thus satisfies (10). Let be sufficiently
large to guarantee that

(41)
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Let be the channels that demonstrate the strong
separability of , see Definition 6. Letting denote the
merging of the ML decoders corresponding to
we have by Lemma 1 that

(42)

Given some let be a channel that satisfies (12) and
(13) with . We now have

The first inequality follows from (42); the second inequality
follows from the first part of Lemma 5 by choosing ,

, to be the ML decoder with respect to , and
by averaging over the codebook; the third inequality follows
from (41); the fourth from the second part of Lemma 5 with

and ; and the last inequality from (41). It
thus follows that

and the first part of the theorem follows by noting that
is subexponential and by choosing

The second part of the theorem follows by noting that if
is strongly separable then any random-coding strong uni-

versal decoder is also a deterministic-coding strong universal
decoder, as the next lemma demonstrates.

Lemma 6: If the family of channels
is strongly separable (see Definition 6) then random-

coding strong universality implies deterministic-coding strong
universality.

Proof: Let be arbitrary but sufficiently small to
guarantee that

where is the constant appearing in the definition of strong
separability (Definition 6), and that thus satisfies (10). Let

be sufficiently large to guarantee that

(43)

and

(44)

where is the sequence of random-coding strong universal
decoders. Given a blocklength let be the
channels that demonstrate the strong separability of. Thus
for every there exists such that (12) and (13) hold,
and the function is subexponential.

Denoting by , the event that a rate-
blocklength- random codebook , whose codewords are

drawn independently and uniformly over , satisfies

we have by (43) and Markov’s inequality that

and thus by the union of events bound

and there thus exists a codebook satisfying

(45)
Given , let be such that (12) and (13) both hold.
We now have

and the proof is concluded by recalling that is subex-
ponential and by choosing . Note that the first
inequality follows from the first part of Lemma 5 by taking

and . The second inequality follows
from the second part of Lemma 5 with and
that last inequality follows from (44).

VI. I NFINITE ALPHABETS

We next consider some extensions of the results presented
in previous sections to the case where the input and output
alphabets are not necessarily finite. Once again we restrict
ourselves to parametric families

(46)

where for any the channel is a mapping that maps
any input sequence to a probability measure
defined on a common-algebra on .

As before, we shall discuss random coding in which code-
words are drawn independently and uniformly over a set

. We are implicitly assuming that is endowed
with a -algebra, and we denote the uniform measure on
by (making the blocklength implicit).

We shall assume throughout that and are complete
separable metric spaces (i.e., Polish), that the-algebra on
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is the restriction of the product Borel-algebra on to ,
and that the -algebra on is the product Borel -algebra.

We shall endow the set of distributions on with the
weak topology and assume that for every the mapping

is Borel measurable. This assumption is
equivalent to the assumption that for any and any Borel
set the function from to is
measurable, see [30]. We can thus define the product measure

on as the measure that satisfies

(47)

for any Borel sets .
An additional assumption that greatly simplifies the analysis

is that for every blocklength there exists a measureon
with respect to which all the measures

are absolutely continuous. We shall denote by the
Radon–Nykodim derivative of the measure with
respect to at , i.e.,

This assumption is somewhat restrictive as it rules out
channels like the channel where the input and output
are real and where is independent noise that
takes value in the integers. We shall later remark on how such
channels can be treated.

The final assumption we make is thatadmits a measurable
total ordering, i.e., a total ordering such that the set of all
predecessors of is a measurable set. A typical input alphabet
that satisfies this assumption is with the ordering taken
to be lexicographical with the standard ordering in (i.e.,

).
We can define ranking functions in much the same way

that we did for finite alphabets, except that if the input sets
are infinite then we prefer to deal with canonical ranking

functions. We define a canonical ML decoder for the
channel as a decoder that given a received sequence

and a codebook declares that the transmitted codeword is
, i.e., , if

where the ranking function satisfies the following
conditions:

(48)

for any the mapping is measurable;

(49)

and

(50)

Notice that there always exists an optimal decoder which is
canonical. Indeed, if is the total ordering on extended to

lexicographically then we can define

or

(51)

We can now state the continuous alphabet counterpart of
Lemma 1. Notice that if is finite then Lemma 1 holds
even if is infinite: we did not assume that is finite in
proving that lemma. If, however, is infinite then the proof
needs some modification as follows.

Lemma 7: Given canonical decoders that are based on
the ranking functions and given any arbitrarily
large number , there exists a decoder such that

Note that when we apply this lemma we typically choose
with in order to avoid a loss in the

error exponent.
Proof: To prove the lemma divide the unit interval

into disjoint intervals of length

where is the code rate. Consider now the merged decoder
that forms its decision based on the observationin the
following way: It first considers . If this
is nonempty, it declares that the transmitted codeword was
the codeword that ranks highest (according to ) among

. Otherwise, if , the
decoder considers . If this is nonempty, it
chooses the highest ranking codeword according to, and
otherwise considers , etc. If a decision has not
been reached after considering , the decoders
considers followed by etc.

Assume now that transmission is carried out over the
channel and let be arbitrary. We shall
now compare the performance of the merged decoderwith
that of , the ML decoder tuned to . We thus need
to compare with . Hold the received
sequence and the correct codewordfixed, and assume that
given the decoder ranks in , i.e.,

The decoder makes an error only if some codewordlies
in an interval higher than in one of the lists ,
i.e., if

(52)

or if some codeword lies in the same interval as in one
of the lists , i.e.,

We denote the former event by and the latter by . Notice
that is a necessary condition for an error but not
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sufficient, because of the order in which the decoders are
merged.

We first analyze the probability of the event by noting
that

and hence

(53)

where the first inequality follows from the union of events
bound and the second from the fact that all the ranking
functions under consideration are canonical.

As to the event we note that the probability that
satisfies (52) is, by the union of events bound and the fact that
the rankings are canonical, upper-bounded by

where all probabilities are, or course, conditional onand ,
and where the second inequality follows from the assumption
that ranks in . Noting that

and

we can use Lemma 2 to conclude that

(54)

Inequalities (53) and (54) now prove the lemma.

Note: We used the assumption that there was a measure
with respect to which all the measures are

absolutely continuous to demonstrate that every ML decoder
is equivalent to a decoder that is based on a canonical ranking
function. In the more general situation when we do not have
an underlying measure with respect to which all output
distributions are absolutely continuous, one can often define
an ML decoder for the channel in the following way. To
every one assigns a measurable set with
measure such that the ML decoder operates
as follows. If it declares that the codeword
in was transmitted. Otherwise, if
the decoding is performed using a canonical ranking function.
Since has measure zero, the probability of an incorrect
codeword being in is zero. If this is indeed the structure
of the optimal receiver then merging of the receivers corre-
sponding to can be performed by first checking
whether there is a codeword in , and then proceeding

to merge the canonical ranking functions. A good candidate
for is the singular part of the decomposition of the
a posteriori probability on given with respect to the
uniform measure on .

To study strong universality for infinite alphabets we need
the following lemma which is the continuous alphabet coun-
terpart of Lemma 5:

Lemma 8: Let , and let be a rate- , block-
length- codebook such that for every codeword there
exists a set such that

and

Then for any decoder

Also,

Proof: Let be the set of received sequences
that are decoded by to message, where .
We then have

which proves the first part of the lemma. The second part
follows from the first part by choosing to be the ML decoder
for , by noting that by the optimality of the ML rule

and by averaging over the codebook.

We can now define strong separability for general alpha-
bets. Notice that, when applied to finite alphabets, this new
definition of strong separability is slightly more inclusive than
Definition 6.

Definition 7: A family of channels
defined over common general input and output alphabets
is said to bestrongly separablefor the input sets
if there exists some that upper-bounds the error
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exponents in the family, i.e., that satisfies

(55)

such that for any and blocklength , there exists a
subexponential number (that depends on and on )
of channels , such that for any there
exists that approximates in the
following sense.

• For every there exists a measurable set
such that

(56)

and

(57)

• For every there exists a measurable set
such that

(58)

and

(59)

We now state the main result on universal decoding for
general alphabets:

Theorem 5: If the family of channels
is strongly separable in the sense of Definition 7 and if it
satisfies the assumptions preceding Lemma 7 then it admits
a random-coding and deterministic-coding strong universal
decoder. If can be written as a countable union of strongly
separable families then the family admits a random-coding and
deterministic-coding weak universal decoder.

Proof: The first part of the theorem follows from Lem-
mas 7 and 8 in much the same way that Theorem 2 follows
from Lemmas 1 and 5. To prove the second part of the theorem
note that if

and is a sequence of strong random-coding uni-
versal decoders for then the decoder , the results from
merging , is random-coding weakly universal
for . Deterministic-coding universality can be proved by
methods similar to those employed in the proof of Lemma 4
by enumerating the union of all approximating channels,
where the union is over the blocklengths, and over the
spaces .

VII. EXAMPLES

In this section we shall consider different families of chan-
nels and study their separability properties. We shall also
demonstrate by example that there are some families of
channels that admit weak universal decoding but not strong
universal decoding.

A. Discrete Memoryless Channels

Consider the case where the family of channels is
the family of all discrete memoryless channels (DMC’s)
over the finite input alphabet of size and the finite
output alphabet of size . This family of channels is
parameterized naturally by the set of all by stochastic
matrices. We shall thus take this set of matrices as our
parameter space and have

where denotes the entry in row and column of the
matrix , and where , and .
To simplify notation we are thus identifying the set with
the set and likewise for .

Lemma 9: The family of all discrete memoryless channels
over the finite input and output alphabets is separable in
the sense of Definition 5 for any sequence of input sets.

Proof: Since the channels in the family are memoryless
we have

We thus conclude that

and the required separability now follows by considering
the countable set of all stochastic matrices with rational
nonnegative (but including zero!) entries.

Lemma 10: The family of all discrete memoryless chan-
nels over finite input and output alphabets is strongly
separable in the sense of Definition 6 for any input sets .

Proof: Let be a strict upper bound on the random-
coding error exponents of all the channels in the family of
DMC’s over the alphabet , e.g., . By the
discussion following Definition 6 this choice of guarantees
that (10) holds. Let

and be given, and assume for the simplicity of
notation that is an integer. Let the blocklength under
consideration be fixed. The idea of the proof is to
quantize the set of all stochastic matrices by quantizing each
component logarithmically.4 Some cells will be empty, i.e.,
contain no stochastic matrices. From those cells that are not
empty we choose an arbitrary representative. Special care must
be taken in treating cells in which one of the components
contains the element. The details follow.

4The proposed quantization is different from the uniform quantization that
is often used to prove capacity results [16, p. 216], [14]. The finer analysis is
required because of our interest in error exponents.
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Divide the interval into disjoint intervals,
, where

(60)

(61)

Notice that except for the interval all the other intervals
have the same ratio between their endpoints, and this ratio
is . Thus

and (62)

Consider now the component-wise quantization induced by
the partition (60) and (61) on the set of all by
matrices with elements in . This quantization results in

cells, some of which contain stochastic
matrices and some of which do not. Let be the number of
cells that contain stochastic matrices, and let
be a set of stochastic matrices representing those cells
containing stochastic matrices, one from each cell. Since the
total number of cells is polynomial in the blocklength it
follows that is subexponential.

Given any stochastic matrix, let be the stochastic
matrix that represents the cell in whichlies. It follows from
(62) and (60) that for any at least one of the
following conditions holds:

or

depending on whether (and hence ) lies in
or not. Notice that this condition is symmetric inand .
We shall next verify that this condition implies (12). By

symmetry, this will also imply (13). Let
and be given. If for some

then

and we have nothing further to check, as (12) is satisfied
trivially. If, however, , for for every ,
then by (62)

and hence

and (12) holds.

B. Finite-State Channels

We next consider the family of all finite-state channel that
are defined over common finite input, output, and state alpha-
bets respectively. The probability law of any channel
in this family is characterized by a conditional probability
assignment

and an initial state . Operationally, if at time the
state of the channel is and the input to the channel at
time is , then the output of the channel at time and
the state of the channel at time are determined according
to the distribution

For any input sequence and output sequenceof length
we have that conditional on the initial state

(63)

where

(64)

and . It is helpful to think of the family
of finite-state channels as being parameterized by

because the probability of an output sequencegiven
an input sequence is determined by the initial state and
by the probability assignment .

Lemma 11: The family of all finite-state channels over the
finite input, output, and state alphabets , respectively,
is separable in the sense of Definition 5 for any sequence of
input sets .

Proof: It follows from Lemma 2 and from (63) and (64)
that for any input sequence, output sequence, and initial
state

Taking the logarithm of the above equation and considering the
same argument applied toand in reverse roles we obtain

(65)

The separability of the family now follows by considering
the countable family of channels con-
sisting of conditional distributions with (nonnegative) rational
components and all .

Lemma 12: The family of all finite-state channels defined
over common finite input, output, and state alphabets
is strongly separable in the sense of Definition 6 for any input
sets .
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Proof: We shall fix the initial state and show the
existence of a subexponential number of approximating chan-
nels for that initial state. Since the number of states is finite,
the general result will follow by taking the union of the
approximating channels and initial states. Let upper-
bound the error exponents in the family, say ,
and set

(66)

Let the blocklength be fixed, as well as some , and
let be such that . To simplify notation
assume that is an integer.

Any conditional probability assignments
can be represented by a matrix of rows and
columns. To simplify notation we shall use the matrix notation

for . As in the proof of the strong
separability of the family of DMC’s, we shall quantize this
set of matrices component-wise on a logarithmic scale, as in
(60) and (61). Choosing stochastic matrices to represent the
cells (of which there are a polynomial number) that contain
stochastic matrices as in the proof of the strong separability
of the family of DMC’s, we can conclude that for any
there exists some such that

(67)

and

(68)

where the set corresponds to components of the matrix
that do not fall in the interval , i.e.,

Notice that because and are in the same cell we also
have

Conditions (67) and (68) are thus completely symmetric with
respect to interchangingand and thus it suffices to show
that these conditions imply (12), because (13) will then follow
by symmetry.

Given an input sequence , an output
sequence , and an initial state , we define

Thus is the set of “good” state sequences in the sense that
for every component we have that

and hence

(69)

Invoking Lemma 2 we have from (69) that

(70)

The complement of , denoted , is referred to as the set
of “bad” sequences. Since

we have by (68)

(71)
and since the number of state sequences is it follows
from (66) and (71) that

(72)

To show that (12) holds for all sequence, and we treat
two cases:

Case 1:

(73)

In this case, it follows from (72) that

and for such (12) holds in the trivial sense.
Case 2: The sequences and are such that

(74)

and hence, by (70)

(75)

For such sequences (12) holds because

where the first inequality follows from (72), the second from
(70), and the third from (75).
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In the above derivation we have assumed that the number
of states is known to the receiver designer. In fact, only
an upper bound on the number of states is required, as
every finite-state channel with states can be described as
a finite-state channel with states by duplicating some
of the states. Note, however, that the rate of convergence of
the universal decoder depends significantly on the number of
states, and designing the receiver to account for more states
than the channel really has results in poor rates of convergence.
This problem can be solved by designing a “double-universal”
decoder. Here we design universal decoders
for each of the possible number of states ,
and then merge the decoders to obtain the double-
universal decoder. The double-universal decoder now has a
rate of convergence which is at most worse than that of
the universal decoder that could have been designed had the
number of states been known in advance.

This approach is the dual of the twice-universal source
coding approach of [32] and [33].

If the number of states is completely arbitrary, then strong
universality cannot be guaranteed, and we can only guarantee
weak universality. The latter can be guaranteed by merging

decoders where is subexponentially
increasing in the blocklength, and is universal for a
finite-state channel with states.

C. Intersymbol Interference

In [21] Merhav posed the problem of designing a uni-
versal decoder for the discrete-time Gaussian channel with
unknown intersymbol interference (ISI) coefficients. The input
and output alphabets are both the real line, and

where is the vector of unknown ISI co-
efficients, and is independent of the input and is a
sequence of independent Gaussian random variables of zero
mean and unit variance. We shall next demonstrate that if the
ISI coefficients satisfy an energy constraint of the form (14),
and if the input set satisfy an average power constraint
(15), where , , and are all known, then the family is
strongly separable and a strong universal decoder exists by
Theorem 5. If and are unknown then we can consider
the countable union of ISI channels over all integersand
to obtain a weak universal decoder for the case whereand

are unknown (but finite).
In this problem the output distribution corresponding to any

input and any ISI sequence is absolutely continuous with
respect to the Lebesgue measure with density

(76)

where we are defining for , and we are using
rather than to parameterize the family.

To establish strong separability first note that by analyzing
the two-codewords case one can determine that

(77)

where, see [34, eq. (2.3.18)]

(78)

This follows from a simple energy calculation and the
Cauchy–Schwartz inequality by noting that

It follows from (77) and (78) that the error exponents of the
channels in the family are bounded and

(79)

satisfies (55).
The following lemma, which is proved in Appendix III, will

be useful in establishing strong separability.

Lemma 13: Given two sets of ISI coefficients

and some satisfying

where

(80)

and

(81)

We are now in a position of prove the strong separability
of the family. Given as in (79) we can find, by the Large
Deviations principle [35], some sufficiently large so that

(82)
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where are i.i.d. Normal random variables of zero mean
and unit variance. Given any we can find by Lemma
13 and (76) some sufficiently small (which depends on

and ) so that

(83)

implies

(84)

whenever and

We now choose the grid to guarantee that

for every satisfying (14) there exists some
, such that

with subexponential. This can be clearly done because
any ball of radius in can be covered by

balls of radius as can be easily verified by considering the
size of the smallest cube containing the-ball, and the largest
cube contained in the-ball.

Given any let be such that

For any satisfying let

This choice guarantees that (56) holds by (82), and that (57)
holds by (84). The second requirement of Definition 7 follows
by a similar argument. This establishes the strong separability
of this class of ISI channels, and Theorem 4 is thus proved.

It is interesting to note that the number of-balls required
to cover the -ball does not grow with the blocklength.
This leads us to suspect that for this family the convergence
of the performance of the universal decoder to that of the ML
decoder is very good.

The convergence does, however, depend significantly on
the number of ISI coefficients. Using the previously discussed
“double-universality” approach (see Section VII-B), one can,
however, guarantee that the rate of convergence be essentially
determined by the number of ISI coefficients, even if only an
upper bound on that number is given.

D. A Pathological Example

The following is an example that demonstrates that some
families admit weak universal decoding but not a strong one.
The example is really the binary-added arbitrarily varying
channel (AVC) in disguise; see [36, p. 189, Example 1] and
references therein.

Consider the family of channels with binary inputs and
binary outputs (i.e., ) that is parameterized
by , where is the countable set of all half-infinite binary
sequences that have a finite number of ones. Let
denote the binary sequence corresponding to , and let

if
otherwise.

Thus if the sequence is transmitted
through the channel of parameter then the
resulting output is where

and denotes - addition (exclusive or).
Every channel has capacity 1 bit, and if random

coding is carried out uniformly over the set of input sequences
with an equal number of zeros and ones5 then the resulting
error exponent is , for (see [11], [16]), because
if is known then for all practical purposes the channel

behaves like a noiseless binary-symmetric channel.
Since the parameter spaceis countable it is separable, and
Theorem 1 guarantees the existence of a deterministic-coding
and random-coding weak universal decoder for the family.

Yet one can easily show using standard techniques from
the theory of arbitrarily varying channels [31], [37], [36, p.
185, eq. (3.15); p. 189, Example 1] that for any code(with
more than one codeword) and any decoderthat is ignorant
of the channel over which transmission is carried out, the
average probability of error, maximized over the parameter
, is bounded from below by . There is thus no way to

achieve uniformly good performance over all the channels in
the family, and a strong deterministic-coding universal decoder
does not exist for this family. In fact, by [36, p. 189, Example

5This is the choice for even blocklengthn. For oddn we can take those
sequences where the number of ones exceeds the number of zeros by1.
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1] there does not exists a strong random-coding universal
decoder for this family either.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have demonstrated that for many of the
families of channels that are of interest in wireless commu-
nication the ignorance of the receiver of the channel in use
is not a fundamental impediment for reliable communication.
The receiver can employ the proposed universal decoding
algorithm to asymptotically perform as well as the maximum-
likelihood decoder tuned to the channel in use.

These results easily extend to multiple-access channels.
Consider an -to-one multiple-access channel (MAC) where
user draws its codewords independently and uniformly over
a set , where is user-’s (finite) input alphabet,

. A receiver for such a channel can be described by
specifying a ranking of for each possible
received sequence , where is the output alphabet.
The idea of merging decoders extends straightforwardly to the
MAC, as do most of the results of the paper. With these tools
we can thus demonstrate the existence of universal decoders
for fairly general multiple-access channels with memory, thus
extending the results of [38] and [39] on universal decoding
for memoryless multiple-access channels.

The penalty for not knowing the channel seems to be in
complexity. The universal decoder proposed in this paper
might, and often does, have a complexity that is much higher
than that of the maximum-likelihood decoder. Particularly,
since the universal decoder is based on ranking functions and
the idea of merging, it is required, for any given received
sequence , to compute the ranking of each codeword among
all the possible sequences according to each of
a polynomial number of channel laws. This can result in
formidable complexity particularly if the cost of evaluating

is high, as is the case for finite-state channels where
it is exponential in the blocklength (63).

The existence of universal decoders motivates the search for
decoders that are not only universal but also computationally
efficient. Some promising results in this direction have been
recently reported in [29] and [40].

APPENDIX I

In this appendix we demonstrate by a simple example that
the naive training sequence approach to communicating over
unknown channels does not, in general, yield a universal
decoder. Consider the simple case where the family of chan-
nels consists of only two channels, a BSC with crossover
probability and a BSC with crossover probability .
We denote the first law by and the latter by .
Clearly, the ML decoding rule for the first channel is minimum
Hamming distance decoding, whereas the rule for the second
is maximum Hamming distance decoding. Assuming that
random-coding is performed so that codewords are
drawn independently and uniformly over the set of all-length
sequences with an equal number of zeros and ones, we have
that the resulting random-coding error exponents are identical

[16], and we denote them by . Thus

Consider now a training sequence approach to the problem
where each block of length begins with a training sequence
of length followed by unknown symbols that
constitute a codeword of length from a random codebook
with codewords. The resulting code, consisting of the
training sequence and unknown symbols is thus of rate
and blocklength . The decoder decides which channel in the
family is in use by counting the number of bit inversions
in the training sequence, and subsequently uses minimum
or maximum Hamming distance decoding for the unknown
symbols accordingly, depending on whether more than a half
of the training bits were flipped or not.

To analyze the performance of the training sequence ap-
proach, let us break up the overall probability of error depend-
ing on whether the decoder correctly identifies the channel or
not. By Bayes’ rule

It is fairly straightforward to see that as tends to infinity
the probability of error under mismatch conditions tends to one
[6]. Likewise, as tends to infinity, the probability of correct
identification tends to one. Thus

and the fact that the training sequence approach does not
yield a universal decoder now follows by noting that, by the
large deviations principle [35], for the probability of incorrect
identification to decrease exponentially in, the length of the
training sequence must grow linearly in .

APPENDIX II

In this appendix we give a Proof of Lemma 2. We start with
the first claim of the lemma. First note that the function
is monotonically increasing in the interval , and the case

is thus proved. Consider now the case . Observe
that for any the function is concave in for

, and that . Thus by Jensen’s inequality,
for any and any

Choosing and now concludes the proof of
this part.
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A proof of the second part of this lemma can be found in
[41, Lemma 1]. Note, however, that we have chosen to define

whereas it is defined as in [41]. It is, however,
straightforward to verify that the results still hold.

The third claim of the lemma is trivial because it holds
point-wise and must therefore also hold in expectation.

APPENDIX III

The Proof of Lemma 13 is based on repeated application of
the Cauchy–Schwartz inequality: Let

where the last step follows from the Cauchy–Schwartz in-
equality with

(85)

and

(86)

We thus have from (85)

(87)

and by the triangle inequality

(88)

(89)

(90)

Recalling the Definition (80) of we have

(91)

By symmetry we also have

(92)

where is defined in (81). Inequalities (91) and (92)
conclude the proof of the lemma.
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