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Universal Decoding for Channels with Memory

Meir Feder,Senior Member, IEEEand Amos LapidothMember, IEEE

Abstract—A universal decoder for a parametric family of carried out, but even performs asymptotically as well as the

channels is a decoder whose structure depends on the family pest decoder that could have been designed had the channel
but not on the individual channel over which transmission takes law been known

place, and it yet attains the same random-coding error exponent . T
as the maximum-likelihood receiver tuned to the channel in use. |t Should be stressed that no prior distribution is assumed

The existence and structure of such decoders is demonstratedon # € ©, and the universal decoder is required to perform

under relatively mild conditions of continuity of the channel law  asymptotically as well as the ML decoder on any channel
with respect to the parameter indexing the family. It is further g - @,

shown that under somewhat stronger conditions on the family ) . .
of channels, the convergence of the performance of the universal Before we define asymptotic performance and in order to

decoder to that of the optimal decoder is uniform over the set of Motivate the definition, we shall first briefly describe the
channels. Examples of families for which universal decoding is use of training sequences to facilitate communication over
demonstrated include the family of finite-state channels and the an unknown channel, a use which is very common in many
family of Gaussian intersymbol interference channels. wireless systems [1], [2]. In order to help the receiver identify
Index Terms—Compound channel, error exponent, finite-state the channel in use, the transmitter sends a known sequence
channel,.GiIbert.—EIIiott channel, intersymbol interference, ran- of symbols over the channel. This known input sequence is
dom coding, universal decoding. called “training sequence.” Since the sequence is known at
the receiver, the receiver can estimate the channel law by
[. INTRODUCTION AND DEFINITIONS studying the statistics of the received symbols corresponding to
\5}%? known input sequence. The receiver then typically decodes
It_he rest of the transmission by performing ML decoding with
The channel over which transmission is to be carried out [&€SPect to the estimated channel law. It should be stressed that

unknown to the receiver designer, and the designer only kno g transmitter itself does not know the channel law and cannot

that the channel belongs to some family of channels therefore convey this information to the receiver.
The use of training sequences has some drawbacks. First,

F ={pe(y|x),0 € O} (1) thereis a mismatch penalty. Because the training sequences are
of limited length, the channel estimate formed at the receiver
where© is some index set. Had the channel been known in &d-imprecise, and the data sequence is thus decoded according
vance, the designer could have used the maximum-likelihogflan incorrect likelihood function. This results in an increase
(ML) decoding rule to minimize the average probability ofn error rates [3], [4] and in a decrease in capacity [5]-[10].
error. This rule, however, cannot be used in our scenario assiicondly, there is a penalty in throughput, because the training
typically depends on the channel law, and the ML decodingquences carry no information. This penalty is of course
rule_ is thus typically different for different members of thyorse the longer the training sequence is as compared to the
family F. o length of the data sequence. We thus see that increasing the
In spite of the above, we shall show in this paper that undgigth of the training sequences results in a hit in throughput,
fairly mild conditions on the family of channelg, there exists \ynereas decreasing its length reduces the accuracy of the
a universal decoder fof that performs asymptotically as well channe| estimation and thus results in a more severe loss in

as the ML decoder and yet does not require knowledge of gy rates and in the capacity due to the decoding mismatch.

channel over which transmission is carried out. The proposedry oyercome this tradeoff one might wish to choose the

decoder t.hus not only competes favorably yvith other Qetgctqé%gth of the sequence sufficiently large to ensure precise
that are ignorant of the channel over which transmission ¢hannel estimation, and then choose the data block sufficiently
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by blocklength) when ML decoding is employed is exponenhat is incurred when such a random codebook is used over
tial, with the error rate decreasing exponentially with the delahe channep,(y | ) and is decoded using the decoderin
(blocklength)n, where the exponent depends on the channather words P, ,(error) is just the average afy . (error | C)
law and on the rate of transmission, and is typically positive faver the choice of codebooka
rates below channel capacity. While finding codes that achieveGiven a known channels(y | ) and a codebook, the
this performance is typically very difficult, one can ofterdecoder that minimizes the average probability of error is the
demonstrate their existence by a random-coding argument, iML, decoder [13]. A decodep is said to be ML for the channel
by showing that the average (over codebooks and messages$y | z) if
probability of error of a randomly chosen codebook can exhibit
a good exponential tradeoff between error rates and delay. (%) =1 = po(y | 2()) = _max  po(y [ 2(5)).  (4)
With these observations in mind, we define a universal ==l
sequence of decoders as a sequence of decoders that achideéige that the ML decoder is not unique as different ML
the same random-coding error exponent as the ML decodegfceivers may resolve ties in the likelihood function in different
for every channel in the family. To make this more precise wgays. All ML receivers, however, give rise to the same average
need the following setup. probability of error for any cod€. We denote this average
Consider a family of channels (1) defined over the commgstobability of error byPs g(etror | C). Thus Py g(error | C)
input alphabett’” and the common output alphak®t For any is the average (over messages) probability of error incurred
6 € © the lawp,(y | ) maps every input sequence when the codebook is used over the channgk(y | z)
€= (21, wn) € AT and ML decoding tuned té is employed. We similarly use
oo Py y(error) to denote the analogous expression for the average
to a corresponding probability law o™. Notice that we (Over messages and codebooks) probability of error for a
are omitting the dependence on the blocklengthstrictly randomly chosen codebook.
speakingps (¢ | ) is thus a sequence of mappings, one for We are now in a position to define weak random-coding

each blocklengthn. universality, and to make precise the notion that the universal
Given a rateR blocklengths codebook decoder performs asymptotically as well as the ML receiver
tuned to the channel in use.
C:{w(l)v"'vw(L2nRJ)}CXn (2) . . .
Definition 1: A sequence of decoder:,,} is said to be
a decodery is a mapping random-coding universdbr random-coding weakly univergal
bVt {1, [2B]) for the family {ps(y | €),0 € ©} and the input-set sequence
) o {B.}, B, C &", if
that maps every received sequence Y™ to an index: of 1 Py (
some codeword. Strictly speaking, the mappifglepends, lim _108<M> =0, v € O, (5)
of course, not only on the received sequence but also on the "7 7" Py p(error)

codebook, but to avoid cumbersome notation we do not make

this explicit. It should however be noted that throughout this Notice that in our definition of a weak random-coding

paper we assume that the codebook, even when drawnusaiversal decoder we do not require that the decoder attain

random, is known to both transmitter and receiver, and th&e same asymptotic performance as the ML decodearfigr

the decoding is allowed, and indeed should, depend on ®gde. This requirement is too restrictive, as there are some

codebook. codes that cannot be decoded universally even in well-behaved
If all the codewords of a codé are used equiprobably (asfamilies of channels. For example, # is the family of all

we shall assume throughout) then the average (over messagg¥ry-symmetric channels (BSC) with crossover probability

probability of error P ,(error | C) incurred when the code- ¢ € [0, 1]then, as we shall show later, a weak random-coding

book C is used over the channeb(y | =) with the decoder universal decoder can be found, and yet there are some singular

¢, is given by codes that are not amenable to universal decoding. Indeed,
2] any binary code that is closed under Hamming complement
(component-wise negation) is not amenable to reliable univer-
Pog(error [ C) = 2nRJ . D plyla). Q) g decoding.
=1 o)A} We will, however, show that while not every code is

When random coding is considered, the codeb@oks amenable to universal decoding, there are some very good
drawn at random by choosing its codewords independen@igdes that are. More specifically, we will show that under
and uniformly over some seB3,, ¢ A™. The setB,, will be relatively mild regularity conditions on the family of channels
referred to as theput set We shall let?, , (error) denote the one can approach the random-coding error exponent (error-rate

average (over messages and codebooks) probability of eigFsus delay) with sequences of (deterministic) codes that are
. , , _ amenable to universal decoding. This motivates the following
Throughout this paper we restrict ourselves to random coding wher,

: : | Whefefinition of weak deterministic-coding universal decoders.
the codewords are drawn uniformly over the input $&t, thus excluding g

independent and identically distributed (i.i.d.) random coding. However, since L . . .
B,, can be arbitrary and could, for example, be the set of all sequences of aDef'n_'t'.or_' 2 Alsequ?nce of deCOd?r'Bn. 1S Sa'd to be
given type, there is no loss in optimality in this restriction; see [12]. deterministic-coding universgbr deterministic-coding weakly
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universa) for the family {pe(y | 2),6 € ©} and the input-  We shall demonstrate in Theorem 2 that under fairly mild
set sequence{B,} if there exists a sequence of rafe- conditions on the family of channels, one can demonstrate
blocklengths codebooks{C,,}, C,, C B,, such that strong deterministic-coding universality. Once such univer-
sality is established, the achievability of a rake for the

o1 Py, Cn X
lim —log w =0, V8 €©. (6) compound channeF can be demonstrated by showing that
n—oo n P979(eI‘I‘OI‘)
_ 1 -
It is interesting to note that even for very simple families lim inf — = log sup Fy ¢(error) > 0.

- . . n—oo N 4<E)
of channels, the training sequence approach is not universal.

For example, it is shown in Appendix | that even if theyotice that the above expression involves only random coding
family of channels consists of only two channels, say @nd not specific codes), and more importantly, it only involves

binary-symmetric channel with crossover probabilit§s and  optimal ML decoding.

a binary-symmetric channel with crossover probability5,  This approach to the compound channel is explored in [12]

the training sequence approach is not universal. The reasgere it is used to compute the compound channel capacity
is that unless the receiver correctly identifies the channel (_Ifﬁ a class of finite-state channels (FSC), a class of channels
use, it is almost bound to err, and for the receiver to identiﬁﬁat, as we shall show, admits strong deterministic-coding

the channel with exponentially small probability of error theniversality.

length of training sequence must be linear in the blocklength, Note that a receiver need not be strongly universal in order
resulting in a loss in the error exponent. to achieve the compound channel capacity of a family. For

The issue of universal decoding is intimately related to tr@(amme, ifF is a convex family of memoryless channels, then
problem of determining the compound channel capacity oftge compound channel capacity of the family can be achieved
family of channels [14]-[17]. A raté is said to be achievable ysing the ML receiver tuned to the channel that achieves the
for the family of channels?" if for any givene > 0 and every saddle-point for the mutual information functional [7], [18].
sufficiently large blocklengtin there exists a blocklength- On other channels in the family, however, this decoder does
rate4? codebookC,, and a decodeg,, such that not typically attain the same random-coding error exponent as

sup Py 4, (error | C,) < e. the.l\/_lll_ decoder, and this decoder is thus not universal by our
6cO definition.

Our various definitions of universal decoding and our ap-
proach to the problem have been influenced by previous
work on the problem, and particularly by [16] and [19].
Irbfthe former work the problem of universal decoding is

died for memoryless channels over finite input and output
ﬁl)llphabets, and the definition of universality is very close in

example, if the family of channel® is a subset of the class of "2{Uré to what we refer to as "strong deterministic-coding
discrete memoryless channels (DMC) then a training sequertidversality.” It is shown there that the maximum (empirical)
approach to the problem will probably work. On the othgputual information (MMI) decoding rule, first suggested by
hand, the requirements on the decoders for the compmﬁappa [20], is strongly deterministic-coding universal for any
channel are more stringent singe, must have uniformly family of memoryless channels defined over finite input and
good performance over all channels in the family. With th@UtPut alphabets. If the family~ consists of the family of

compound channel in mind we thus define the notion of strorgg discrete memoryless channels over the alphalétsnd

universality. The adjective “strong” refers to the uniformity of"* then the MMI algorlthm_ IS equwalgnt o a generalized
the convergence. Once again we distinguish between randdfi decoding rule where given a received sequegeehe

coding universality and deterministic-coding universality: codewordm_(i) rec_eives .the SCOr@upyce poly | 2(0)). .
In [19], Ziv studied universal decoding for the class of finite-

Definition 3: A sequence of decodefs.,, } is said to bean- state channels where the next state is a deterministic—but
dom-coding strongly universébr the family { Py (y|z),6 €©}  unknown—function of the previous state, input, and output.
and the input setdB,} if the convergence (5) is uniform For this family of channels Ziv proved that if random coding
over ©, i.e., if is carried out by choosing the codewords independently and
< Ps.., (error)> 0 uniformly over the set of sequences of a given composition

The compound channel capaciy(F) of the family F is
defined as the supremum of all achievable rates.

In a certain sense, finding the sequence of decodgrfor
the compound channel is easier than finding a sequence
universal decoders because in the definition of the compo
channel capacity no attention is paid to error exponents:

. 1
lim sup — log

(7) (type), then one can find a strong random-coding universal de-
coder for the family. The decoder that Ziv proposed is based
Definition 4: The sequence of decodefs:,} is said t0 on the Lempel-Ziv algorithm from source coding. Additional
be deterministic-coding strongly universaor the family \work on universal decoding appeared in [21] where weak
{FPe(ylz), & € ©} and the input set§ B, } if there exists a random-coding universality was demonstrated for a family of
sequence of raté blocklengthn codebooks{C,.}, C. C Bn, memoryless Gaussian channels with an unknown deterministic
for which the convergence in (6) is uniform ovéri.e., interference of a Specia| parametric form.

Py, (error | Cp)\ 0
Pg}g(error) o

Py g(error)

(8) 2Ziv only claimed weak random-coding universality, but his proof demon-

1
lim sup — log
strates strong random-coding universality.
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Our work extends the previous work on universal decodirapplications of the results to specific families of channels,
in several ways. First, we study universal decoding not onparticularly the family of DMC's, finite-state channels, and
for DMC's, as in [16], but also for channels with memory. Ouimtersymbol interference channels. That section also describes
results are fairly general and include the family of all finitean example of a family of channels that admits weak universal
state channels [11], [22], and not only those with deterministitecoding but not strong universal decoding. The paper is
transitions, which were studied in [19]. In particular, ouconcluded with a brief summary and discussion in Section
results are valid for the class of all Gilbert—Elliott channel¥IIl.

[23]-[26], which have random transitions and are often used

to model time-varying channels. In addition, we do not require I
that the benchmark random coding be done over the set of ) ) )
sequences of a given type as in [19]: as long as the codeworgBefore we can state th. main result on weak un_lversallty we
are chosen uniformly over some s&,, this set can be need Fhe foIIowmg .def|n|t|on of a separab!e family. Loosely
arbitrary. This generalization can be important for channef®®aking, a family is separable if there exists a countable set
for which the input distribution that achieves capacity 40} thatis “dense” in® in a sense that is made precise next.

not independent and identica”y distributed (||d) AISO, the Definition 5: We shall say that the fam"y of channels (1)
universality that we demonstrate is not only strong randony (weakly) separablefor the input sets{B,.}, B, C X™, if

coding universality as in [19] but also strong deterministiGhere exists a sequend® }3>, C O that is “dense” in the
coding universality. Our results also extend to more genefghily in the sense that B

families of channels, including those with infinite input and
1, ‘<pe(y|"7) )‘ _
~llog( ~2= )| =0,
e, (y | 2)

. THE MAIN RESULTS

output _a_lphabets. _For ex_amp_le, we shovy that the set i%fflim sup sup
all additive Gaussian noise intersymbol interference (ISI} n—oc (24)cB, xy» 7

channels with a fixed number of I1SI terms of boundedorm Ve ©. (9)
admits strong universal decoding; this problem was posed in
[21]. In other words, for every € © and everye > 0, there exists

Notice that as in [19] we only consider random coding isomek* and someng so that for alln > ng
which the codewords are drawn independently and uniformly | z)
Og(?o y|z )‘ <
pe,. (Y| @)

over some input set. In this respect our analysis excludes the sup -
classical random-coding approach where the components of (y)EB x Y T

eI'he following theorem demonstrates that if the family of
ﬁ;ngmnels is separable for the input sgi, }, then there exist

each codeword are drawn independently according to som
marginal distribution(x), [11]. For most applications this is
not a serious drawback as the random-coding error expone : ni . .
that are achieved by choosing the codewords uniformly ovewgak random-coding ‘find weak deterministic-coding universal
type are usually no worse than those achieved by choosing ﬂ%eecoders for the family.
codewords according to the product distribution correspondingTheorem 1:If a family of channels (1) defined over com-
to that type, see [27] for the Gaussian case and [12] for theon finite input and output alphabeis Y is separable for the
more general case. input sets{ B,, }, then there exists a sequence of decoders

In some sense, the problem of universal channel decoditigit are random-coding and deterministic-coding universal for
is dual to the problem of universal coding for sources ahe family. Thus
unknown law. It should, however, be noted that no feedback _
link is assumed in our problem, and the transmitter cannot lim 110g<P0,un (el‘l“Ol‘)> —0, Vo c ©
therefore use a signaling scheme that depends on the channel 7—>n Pp p(error)
in use. That is why we cannot typically hope to communicate .
at channel capac?ity (of the ch)g?mel %n uZe), since diﬁerejgd there exists a sequence of rateslocklength codes
channels in the family will typically have different capacitie n} such that
and different capacity-achieving input distributions. 1

The rest of the paper is organized as follows. In the next n@g@; 10g<
section we state the paper’s main results. In Section Il we
discuss how ML decoders can be described using rankingThe separability condition is not enough to guarantee the
functions and how every ranking naturally defines a decodexistence of strong universal decoders, as demonstrated in
The main result of that section is a description of how 8ection VII-D. For this we need a stronger notion, which we
finite number of different decoders (ranking functions) can bieave termed “strong separability.” Loosely speaking, a family
merged to obtain a new decoder that performs almost as welisistrongly separable if for any blocklengththere exists a
each of those decoders, see Lemma 1. This construction playbexponential numbek () of channels such that the law
a crucial role in the proof of the existence of weak universaf any channel in the family can be approximated by one of
decoders, which are treated in Section IV. Strong univerghkese channels. The approximation is in the sense that except
decoders are studied in Section V. All these sections deal wfthr rare sequences, the normalized log-likelihood of an output
the finite-alphabet case, and in Section VI we extend thesequence given any input sequence is similar under the two
results to the infinite-alphabet case. Section VII contains sordleannels. More precisely

Py, (error | Cp)

i =0 Vo € ©.
Py o(error) ) ’ <
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Definition 6: A family of channels{ps(y | ) 0 € O} Theorem 3: The set of all finite-state channels defined over
defined over common finite input and output alphab®t§’ common finite input, output, and state alphab&tsy, S, and
is said to bestrongly separablefor the input sets{B,}, parameterized by the pair of stochastic matrife&y, s | z, s")
B, C &A™, if there exists somé/ > 0 that upper-bounds and initial statesss € S where

the error exponents in the family, i.e., that satisfies
pe(y | 2, 50) = Z po(y, 8|2, 50)

1 = sCS™
li ——log P, M 10
im sup Slelg - log 9 glerror) < (10) 4ng )
such that for every > 0 and blocklengthn, there exists a po(y, 8| %, 50) = HPH(ytvSt | st-1,1)
subexponential numbéi(n) (that may depend of/ and on t=1
¢) of channels{¢{"}X™) ¢ @ admits strong deterministic-coding and random-coding univer-
sal decoding. Here = (sq1,-- -, s,,) and it is important to note
lim 1 log K (n) = 0 (11) that the receiver is assumed ignorant of the state sequence.
n—oo n

If the number of states is finite but unknown, we can guar-
that well approximate ang € © in the following sense: For antee weak random-coding and deterministic-coding universal
any 6 € © there existsﬂ,ﬁ’f) € 0,1 < k* < K(n), so that decoding.

Our results can be extended to infinite alphabets; see Section
pe(y | 2) < 2"€p91(ﬁ> (v | 2), VI where we prove a theorem analogous to Theorem 2 for

o,y pely | 7) > g-n(+os V) (1) lﬁfeln::i)e”g\llaugbets. As a corollary, we can prove, for example,

and Theorem 4: Consider the discrete-time Gaussian intersym-
bol interference (ISI) channel where the outpgtat time ¢
Pyt (y|x) <2"pe(y | x), is given by
Va,y : pyon (y | @) > 27 (M HesYD - (13) J
o Y, = Z hjXe j+ Z

A good candidate fol is 1+log|X| asPp e (error) is lower- J=0

bounded by the random-coding pairwise error probability (thehere X, is the input at timet, the sequencd7;} is a
probability of error corresponding to the case where thsequence of i.i.d. Normal random variables of mean zero
codebook consists of only two codewords) and the latter and unit variance, angho,---,h;) are the ISI coefficients.
lower-bounded by|X|~™ corresponding to the probability Suppose that the ISI coefficients are unknown to the receiver,
that the two codewords are identical. Note that we assurbet that their numbérJ + 1 and an upper bound on their
throughout that if the transmitted codeword and some othesrm are known, i.e.,

codeword are identical then an error results.

J
Theorem 2:If a family of channels (1) defined over com- > hi<H. (14)
mon finite input and output alphabe#fs, ) is strongly sep- i=0

arable for the input set¢53, }, then there exists a sequencgs the input sets{B, } from which the codewords are drawn
of decoders{w,,} that are random-coding and deterministicgmisfy an average power constraint

coding strongly universal for the family. Thus .

<P07“’n (error)) o z € B, = Z z? < nP (15)

. 1
lim sup — log
N0 g T

Py g(error) =t

then a strong random-coding and deterministic-coding uni-
and there exists a sequence of r&eblocklengthn codes versal decoder exists. If the number of I1SI coefficiedt®r

{C,.} such that an upper bound on their nor is unknown then we can
only guarantee weak random-coding and deterministic-coding
. 1 Py, (error | Cp) : lit
lim sup = log| —f~——— "7 ) — 0. universality.
n—=0geg N P979(er1‘01‘)

Many of the families of channels arising in digital com- lll. MERGING DECODERS

munications are strongly separable, and thus admit stronglhe ML decoder is not unique since ties in the likelihood
universal decoding. We shall, for example, show that iinction can be resolved in different ways without changing
addition to the class of all discrete memoryless channels o€ average probability of error. Condition (4) does not there-
finite alphabets, the set of all finite-state channels [11] definé&re completely specify the decoding function. A more precise
over finite common input, output, and state alphab¥étd’, S, description of the ML decoder that also specifies the manner
respectively, is strongly separable. We shall thus deduce fromSince we do not require that; be nonzeroJ may be overestimated, and
Theorem 2 the following in this sense the receiver only needs an upper bound on the ISI memory.
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by which ties are resolved is as follows. Assume that all the,,, (-, ) in the following way: Given a received sequenge
codewords are in some s&, C X™ of size |B,| the ranking function\/, .. (-, ) ranks number one the sequence
. . nR in B,, that My, (-,y) ranks highest. It then ranks second the
(i) € By, vi<i< |2 sequence that/,, (-, y) ranks highest (unless it is equal to the

and consider a ranking function sequence ranked highest By, (-, %) in which case it skips to
. consider the sequence théf,, (-, ¥) ranks highest), followed
Me: B, x V" — {1,---,|Bal} by the sequence thal/,,(-,y) ranks highest, etc. After the

first rankings of all the decoderdZ,, (-, %), -, My, (-, ¥)
have been considered we returnif,, (-, %) and consider the
sequence irB,, ranked second, followed by the sequence that
My, (-,y) ranks second, etc. In all cases, if we encounter a
sequence that has already been ranked we simply skip it and

that given every received sequengemaps the sequence
x € B, to its ranking among all the sequencesHy. The
mapping My(-,y) thus specifies a complete order froin
to |B,| on all the sequences i,, i.e., for anyy € V"
we have thatMy(-,y) is a one-to-one mapping adB,, onto
{1,---,|Bn|}. It is further assumed thatls(z, ) ranks the MOVE On to the next decoder.

- - o . This construction guarantees that if a sequemce B
sequences according to decreasing order of likelihood, i.e., i n
a g g is rankedjth by thekth decoderMy, (-, %) thenz is ranked

pe(y | x) > po(y | ') = Mo(z,y) < Mo(z',y)  (16) (j — 1)K + k or higher byM,, (-, y), i.e.,

where the sequence most likely (given the received sequence M, (z,y) = j implies M, (z,y) < (j — 1)K + k,

y) is ranked highest, i.e., its rank & Given a codebook Ve € B, V1<k<K. (19)
C C B,, the ML decodemp, that is determined by the ranking ’ -
function My(-, -) and defined by Equation (19) can actually serve as a definition for the

o , ) o, merging operation, i.e., the construction &f,, (-,y) from
=1 Iff Mg(2(: My(2(y vy # 4. (17
Po(y) =14 | o(x(i),y) < Mo(x(j),9), J # 4. (A7) My, (9), - My, (- 9).
(|f no such:z existS, as can On|y happen if some of the code- Crucial to our analySiS is the observation that with this
words are identical, we declare an error.) Thus given a receiv@@nstruction
sequencey, the ML receiver determined by/,(-, -) declares M < KM
that the transmitted codeword wagi) if x(i) maximizes uae(@:Y) S 6 (@:9). -
pe(y | x(j)) among all the codewords(j) in C, and in the V(,y) € B x V", V1< k< K (20)

case that this maximum IS achlgved by several codewordswﬁich follows immediately from (19). The following lemma
prefers the one that is ranked hlghestM&;(-_, Y). i demonstrates that on any chanpg(y | ) the performance

It shoul_d be noted that any ranking functidd, (z,y), i.e., of the merged decodedy cannot be much worse than the
any function performance of each of the decoders - - -, $x.

My: By x V" = {1,--,|Bnl} Lemma 1: Given K decodersgs,---, ¢ there exists a
decoderuy (which can be taken as the merging of these

such that for anyy € )™ the function M, (-,y) is one-to-
we Y ¢-y) decoders) such that

one and ontd 1, ---,|B,]|}, defines a decoder in a manner
completely analogous with (17). Thus given a codeb6ak Py oy (error) < K Py 4, (error)
UK — 2Pl ’

B,, and given a received sequengez J" VI<E<K VOcO Vn>1

)= 1 Mu(2(i).) < Mu(2(),9), - ViFd (18) Proof: If the codewords of a codebook are drawn in-
We shall find it important to study the performance thatependently and uniformly over the s&, C &A™, and if

results when a codebodk is used over a channek(y | £) a decoderp that is based on the ranking functiddy(-, -) is

and is decoded using a mismatched ML receiver that is tuneskd, then the average probability of erfr,, (error) incurred

to a different channel, says (y | ). Strictly speaking, over the channeby(y | ) is given by [19]

the resulting average probability of error should, by (3), be 1

denoted byP; ,,, (error | C), however, to simplify notation, P 4(error) = Y > ipe(y | 2) Pr(error | 2.y, ¢)

we denote this average probability of error By ¢ (error | 2CB,, yCY™ |Bnl

C) and the corresponding average probability of error av- (22)

eraged over randomly selected COdebOOka_bygr(errOr).

Thus Ps ¢ (error | C) denotes the average (over message¥)lere

probability of error incurred when the codebaBks used over

the channepy(y | ) and is decoded using an ML decoder Pr(error | z,y,¢) =1 — <1 -

tuned to the channebs (y | ); Ps e (error) is similarly

defined. is the conditional probability of error given that the transmitted
The following construction will play a central role in thiscodeword isz, the received sequence 4 and the decoder

study. GivenK decoderseq,---, ¢ that are based on thebeing used isp. Equation (22) follows from the observation

ranking functionsM,,,---,M,,, as in (18), we can definethat the codewords are drawn independently and uniformly

the merged decodery by constructing its ranking function over B,, and that ifz is the correct codeword ang is the

My(e, y)) T
| Bx|
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received sequence then an error occurs only if some otheThe proof is now concluded by noting thatif; is obtained
codewordz’ is ranked higher tham, i.e., if M,(a',y) < by merging the decoders;,- - -, ¢ then by (20)

My(z,y). Notice thatPr(error | &, ¥y, ¢) does not depend on My, (z,9)

the channels(- | -) over which transmission is carried out, ppax #m’) < K, Vi<k<K. U
but only on the correct codewotd the received sequenge FCEn e o\ Y

and the decodep. _ ~ As pointed out in [28], the problems of universal decoding
To continue with our proof we need the following technicalg yniversal ordering are in some sense dual. In this sense
lemma, which is proved in Appendix II. Lemma 1 is the dual of [28, Proposition 1].

Lemma 2: The following inequalities hold: To prove Lemma 1 we have introduced the notion of
1) The function merging decoders. An alternative approach might have been to
consider the generalized likelihood ratio decoder that giifen
f(z)=1—-(10—=2)", 0<2<1 channelsty, ---, 8 and a received sequengedeclares that
o codeword: was transmitted only if
satisfies

max pe, (y | £(1)) > max ps, (y| z(j)), V1 < j < [277].
I) o max{l,?}, Vs,t € [0, 1] L<hsK LshoK

f() It turns out, however, that this approach, in general, fails. For
where throughout this pap@y/0 = 1. a counterexample see [29]. .
2) If {a;}2, and {b;}L, are two nonnegative sequences Lemma 1 can be used to demonstrate the existence of a
then T weak (or strong) random-coding universal decoder for the case
a1+ +ag where the familyF is finite, i.e., when® = {6;,---,6x},

(23) by choosing the universal decoderto be the decoder that
is obtained by merging the ML decoders corresponding to
wherea/0 = oo for a > 0, and0/0 = 1. #1,---,0x. This approach can even demonstrate weak uni-
3) If U andV are nonnegative random variables then versality (but not strong universality) whe® is countable:
U one can orde® and consider the sequence of decoders}
E[U] < E[V]max v whereuw,, is the merging of the ML decoders of the first(or
any integer-valued subexponential function of the blocklength
wherea/0 = oo, unlessa = 0 in which cased)/0 = 1. 5 that is increasing monotonically to infinity) channels in
To continue with the proof of Lemma 1 consider twoF. The loss in performance is at most a factorsof(i.e.,
decodersg and ¢/, that are based on the ranking functionsubexponential) for alk sufficiently large (to guarantee that
My(-,-) and My (-, ), respectively. It follows from (22) and the true channel is among the firstchannels inF). In the
from the first part of Lemma 2 that next section we shall demonstrate how this approach can be

applied to noncountable families of channels.
Plerror |2,y.¢) _ {1 My <w,y>} 24
i ) r y

bi+---+ by _llénlaSXLb_l

Plerror | 2.y, ¢) My(z,y) IV. WEAK UNIVERSALITY
and hence In this section we shall build on Lemma 1 to construct
Py 4 (error) a universal decoder for families that are not countable. The
Py s(error) idea is to construct the decoder for blocklengttyy merging
’ the firstn ML decoders for the channel, - -, 8, where
B} i x) Pr(error | z,y, ¢’ ) . oo
= Lacn, Eytj’ pe(y | ) r‘( r‘r‘ r‘| v.¢) 8,,---,6, are the firstn channels in a countable sequence of
2 ocB, 2yeyn Po(y | @) Pr(error | 2.y, ¢) channels{#; }32 , that is dense ir® in the sense of (9).
- P(error | z,y,¢') A key role will be played by the following lemma that
= acBnycyr Plerror | &,y, §) demonstrates that iper(y | ) is close tope(y | x) then
My (z,y) Py g(error) = Py g (error). While the proof of the lemma
Smeg}}g};yn My(z,y) (25) is not complicated, the lemma is not entirely trivial be-

. o _ cause even ifpg (y | x) is close tope(y | «) the ML
The equality follows from (21), the first inequality followsdecoder corresponding % can be very different from the
by the third part of Lemma 2, and the last inequality followgne corresponding t#’. This can be seen by considering

from (24) by noting that the case of the family of binary-symmetric channels (BSC)
My (z,y) parameterized by their crossover probabilityd I€orresponds
max =~ ————r > 1 to crossover probability0.5 + ¢ and ¢’ corresponds to a

=€B, yeVr My(z, .
Y o(@y) crossover probability ad.5—¢ then even thoughs andp, are

since for anyy € V" the functionsM(-,y) and M (-,y) close, the two ML decoders are very different: one ML decoder
are both one-to-one mappings ordb, - - -, |B,|}. Inequality decodes according to minimum Hamming distance and the
(25) is a refined version of an inequality given in [19]. It®ther according to maximum Hamming distance. Nevertheless,
importance is that it relates differences in ranking functions # ¢ (error) is a continuous function ofe(y | ) andpe (y |
differences in random-coding error performance. x) so the result is to be expected.
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Lemma 3: If K(n) = n. For all sufficiently large blocklength we have
1 por(y | ) o that K(n) > k* and the ML de:codem?“ is among the
. 10gm <e, V(zy A" x)Y decodersgg, .- -+, ¢s,,,, from which , is constructed. It,
¢ therefore, follows from Lemma 1 that for such sufficiently
then large n
Py g (error) < 22"6159/79/(61“1“01“) pg7,uk(n> (error) < K(n)Py g, . (error). (30)
and B B If, in addition, n is sufficiently large so that > ng then by
Py gr(error) < 27 Pyy i (error). Lemma 3
Proof: To make the proof of the lemma more transparent, Py g, . (error) < 22 Py o(error). (31)
let us break up the assumptions of the lemma into two separate . . -
assumoti Combining (30) and (31) we have that for all sufficiently
ptions.
large n
» < , 2ne A)n n 2 B B
p0 (y | w) —_ p0 (y | w) ? V(m? y) e X y ( 6) P@,uK(n> (error) S K(n)22n€P070(err0r) (32)
and

and the first part of the theorem involving random-coding
por(y | &) > por(y | )27, V(z,y) € X" x Y". (27) universality now follows by noting thak((n) = n is subex-
ponential.
We now have The second part of the theorem establishing deterministic-
coding universality will now follow once we show that if

P Ya:YY 'TOY . . .
o ¢ (error) the family of channels is separable then random-coding weak

= Z Z Lpgr(y | ) Pr(error | &,y, go) universality implies deterministic-coding weak universality,
£C By yCY” | Bl which is the content of the following lemma, Lemma 4[]
< ogne Z Z Lpe,,(y | €) Pr(error | z,¥y, Por) Inspecting the proof we see that some of the conditions
- ‘| Bnl f Th i
2C B, yC " of Theorem 1 can be weakened. First we can replace the
=27 Py g (exror) (28) separability condition with a weaker form that requires that

there exist a sequendé;} C © and a subexponential integer-

< N P 1" gl . . . .
< 2% Py g (error) valued monotonically increasing functidii(n) such that for

1
=2"¢ Z Z B—|p9u (y | z) Pr(error | 2,¥, po) any f € ©
1 imsup min sup Zllog| 224 ) | =
<D D [pype @) Priemor | 2y du) nmoo 1SKSK) @gpen, <y 7| \Po, (U] 2)
@E R, yey© |

e Such a weaker condition could be useful when studying
= 27" Py g (error) (29)  channels with infinitely many internal states where the number

and effect of the internal states grows moderately with the

which completes the proof of the first claim of the lemm slocklenathn. Thi h Id be al ful when th
The first inequality follows from (27), the second inequalit ockiengthn. This approach cou € aiso usetul when the
amily of channels is more naturally parameterized with an

follows from the optimality of the ML decoder, and the third . "
Infinite number of parameters as would, for example, be the

inequality follows from (26). All equalities follow from (21) ; ] . .
and the fact that the conditional error probability, which jsase if a natural parameter is the autocorrelation function of
' ome random process.

: . S
defined in (22), depends any, andg but not on the channel Secondly, if the random-coding error exponents of the

per(+]). : : :
The second claim of the lemma follows from (28) by notinézgmggssgnmtig‘;mg? pfgfégu;')fc;:gng t?\céuggs:jert:jr: \il\rlle (g;ay
that by the optimality of the ML rule provided that the sets have a probability that is negligible with
Py gr(error) < Py gn(error). O respect to the best error exponent in the family. We adopt this

) N approach in dealing with strong separability.
We are now in a position to prove Theorem 1.

Proof: Let {6,};2, be the sequence of channels that Lemma 4:If the family of channels?" is separable then
satisfies (9), and lef € © be arbitrary but fixed. It follows random-coding weak universality implies deterministic-coding

from (9) that for every > 0 there exists some positive integeM€ak universality.

k* (which depends o#, €) and somer, (which also depends Proof: Let {u, } be random-coding weakly universal for
on 6, ¢) such that the family {ps(y | )} and input-set{ B, }, and let{pe, (y |
)72, be a sequence of laws that is dense in the sense of
sup Og<m>‘ <e, Vn > no. (9). It follows from the weak random-coding universality of
(@y)cAmxyn po,. (Y | 2) the sequencéu,} that for anyK > 1 and anye > 0 there

i >
Let the decodet,, be constructed by merging the fist(n) exists some(k, ¢) such that for alin > (K. ¢)

ML decoders corresponding # . - - -, 6, Where for now Py, , (error) < 2"“Py, 4, (error), Vi<k<K. (33)
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Let A denote the event that a raieblocklength» randomly Lemma 5: Let po: (9 | ) andpe (y | 2),6',6"” € © be two
chosen codebook,, whose codewords are drawn indeperehannels that satisfy

dently and uniformly over the séB,, satisfies e
Y Y por(y | 7) < 2"per (y | ),

Pek,un (error | Cn) > K22"/FP01‘»,91‘» (errOl‘)- vz, y pe,(y | .'l‘) > 27n(1\l+log|y|)
It follows from (33) and Markov's inequality that then for any code’ and decodekp
1 ne e —nM
Pr(A) < 75, VISESK, VnZn(Ko. (34) Py glerror | C) < 2% Pon g (error | €) +2

: and
We thus conclude from (34) and the union of events bound that - -
Pg/J-)/(QI‘I‘OI‘) < 2n€Pg//7(-)//(eI‘I‘OI‘) 42 M,

K K
Pr ﬂ Ap=1-Pr U Ak Proof: Given a codeworde(i) € C let
k=1 k=1 N
>1-—K! Foiiy ={y - po (v | 2(4)) > Q—N(M+log|3/|)}
>0 and letD; = ¢ *(¢) be the set of all output sequences that

the decoderp decodes to the codewotel(:), and D¢ the set
where we useD* to denote the set complement of the s€lomplement ofD;. We now have

D. We can thus conclude that far > n(K, ¢) there exists a

codebookC? such that Py g (error | C)
_ LQnRJ
Py, . CH) < K?2™°Py, ¢, , 1 .
oo |6 ey = A 2 X rwly] =)
Vi<k<K. (35) = 5

Choosinge = ¢(K) — 0 and letting K — oo we can 2"

L
1 )
construct a sequence of codebodks } so that < E] > > ey (i)
=1

YD NFz(;)

1 Py, cx
lim — 10g< O st (error | ")> =0, Yk > 1. (36)
n—eo Py, 0, (error) + 3 gntoglyD
To conclude the proof we show that the validity of (8) for the yCFy
dense sequendg@y }, i.e., (36), implies its validity for any. |27 |
This can be seen by noting that if < 1 gne ; —nM
< ormT po(y | (i) + 2
1 pe(y | =) 2] ; yeszﬂ:F,w
sup — 10g<7>‘ <e¢ (37) nR
(@y)EB, x Y T pe,. (¥ | 2) ;2 y
< . 2ne ’ T " + 2771
then by Lemma 3 - |_2nRJ ; y§¢ Pe (?J| (L))
Py g(error) > 27" Py, . g, (error) (38) = 2" Py g(error | C) 427 M.
and by noting that (37) also implies that It now follows by choosingp to be the ML decoder with
respect to the lav¢” and by averaging over the codebo6k
Py, (error | Ch) < 2™°Fy, ., .. (error | Ch). that
Indeed, for any ={z(1),---,«(|2"%|)} C B, and decodep Py g (error) < 27 Py gu(error) 4 27M

from which the second part of the lemma follows by noting

127 that by the optimality of the ML decoder

By s(error | C) = ﬁ Z Z po(y | 2(3))

i=1 yeDs Py g (error) < Py gr(error). O
gne L1277 . With this lemma we can now prove Theorem 2.
< 2] > pe,. (| 2(i) (39) Proof: Let ¢ > 0 be arbitrary but sufficiently small to
=1 yeDy guarantee that
= 2"“Fy,. 4(error | C) (40) 1 _
lim sup sup — — log Py g(error) < M — ¢
whereD; = ¢~1(i), i.e., the sequences W that are decoded n—oeo 6 N
by ¢ to theith message, an®; is its complement. U where M is the constant appearing in Definition 6 (strong
separability), and thus satisfies (10). Les be sufficiently
V. STRONG UNIVERSALITY large to guarantee that
. . . 1 _
The foI_Iowmg Lemma will be useful in the study of strong 9="M < ~inf B, 4(error)2", Vn > no. (41)
universality. 6
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Letegn),~~~,9§?)n) be the channels that demonstrate the strongDenoting by A;, k& = 1,---, K(n), the event that a rate-
separability ofé, see Definition 6. Lettingu,, denote the R blocklengths random codebooK,,, whose codewords are

merging of the ML decoders Correspondinwgﬁ)’ e 9;?()”) drawn independently and Uniformly OVBn, satisfies

we have by Lemma 1 that P

A (error) > K2(n)2nepei’l>,0§,’l> (error)

Py, (error) < K(n)P, (error),

6,00m o .
Ve, V1<k<K(n). (42) we have by (43) and Markov’s inequality that
1
Given somd! € © let 9,(;5) be a channel that satisfies (12) and Pr(Ay) < K2(n)’ V1<k<K(n)

(13) with 1 < k* < K(n). We now have
_ and thus by the union of events bound

Py, (error) < K(n)P, o) (error)
TR K(n)
< K(n)(2" Py g (ervor) +27°) Pr () Af >0
< 2K(n)2"€]50<n> (™) (error) k=1
RS

< 2K (n)27(27 Py 4(exror) + 2-"M) and there thus exists a codebagk satisfying
< 4K (n)227¢ Py o (error). Py, (error | Cr)
= 4 ool ) Ot < K?(n)2", V1l <k < K(n).

The first inequality follows from (42); the second inequality Pe}ﬁ,e}ﬁ

follows from the first part of Lemma 5 by choosi = 6, (45)
@ = 927})’ d) to be the ML decoder with respect &é’f)’ and Givenéd ¢ @, let 9](:}) be such that (12) and (13) both hold.
by averaging over the codebo6kthe third inequality follows We now have

from (41); the fourth from the second part of Lemma 5 with

6 = 9,(;1) and ¢’ = 6; and the last inequality from (41). It

(error)

*\yne —nM
P&,'u,n (error | C:) Pgl(;;) “ (error | Cn)2 + 2

2ty

thus follows that Pye(error)  — P g(error)
Py ., (error) K(n)22 Py, (error | C1)27 + 27
77 i3 < 4 2 ne —
Py g(error) ~ () = 277¢( Py yom (error) — 277M)
P
and the first part of the theorem follows by noting tié¢n) 4Py, (error | C)2me
X . . < Bt
is subexponential and by choosiag= ¢(n) — 0. _ _ S T2 ne P o (error)
The second part of the theorem follows by noting that if O Oy
O is strongly separable then any random-coding strong uni- < 4K?%(n)2%e
versal decoder is also a deterministic-coding strong universal _ _ _
decoder, as the next lemma demonstrates. O and the proof is concluded by recalling tht(n) is subex-

ponential and by choosing= ¢(n) — 0. Note that the first

Lemma 6:1f the family of channels{ps(y | #),6 € inequality follows from the first part of Lemma 5 by taking
O} is strongly separable (see Definition 6) then randor@ —0.9" =p

coding strong universality implies deterministic-coding stron ’“*)’ and¢ =u,,. The second inequality follows
ding strong univ Ity imph nist N9 ﬁom the second part of Lemma 5 with = 922),9” =#, and
universality. that last inequality follows from (44) 0
Proof: Let ¢ > 0 be arbitrary but sufficiently small to q y '
guarantee that
VI. INFINITE ALPHABETS
lim sup SUP—gPM(e”Of) <M —e We next consider some extensions of the results presented

- 6 . . . .
ne in previous sections to the case where the input and output

where M is the constant appearing in the definition of strong|yhahets are not necessarily finite. Once again we restrict
separability (Definition 6), and that thus satisfies (10). L&frselves to parametric families

no(e) be sufficiently large to guarantee that

Pou (error) {po(y | 2),6 € ©} (46)
sup —=———% < 27, Vn > no(e) (43) i )
o Ipg(error) where for anyd € © the channep, is a mapping that maps
and any input sequence € A™ to a probability measurgs (- | )
1 - defined on a common-algebra on)™.
27" M < 3 i%f Py g(error), Yn > ng(e) (44) As before, we shall discuss random coding in which code-

words are drawn independently and uniformly over a set
wherew,, is the sequence of random-coding strong universgl, c x™. We are implicitly assuming thaB,, is endowed
decoders. Given a blocklength let 6", -- ',95,?()”) be the with a s-algebra, and we denote the uniform measureBan
channels that demonstrate the strong separabilitp.oThus by x4 (making the blocklengt implicit).
for everyf € © there exist§,§’l) such that (12) and (13) hold, We shall assume throughout that and )V are complete
and the functionk (n) is subexponential. separable metric spaces (i.e., Polish), thatttedgebra onB,,
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is the restriction of the product Boretalgebra onX™ to B,,, B, lexicographically then we can define
and that thes-algebra ony” is the product Boreb-algebra. o ) ,

We shall endow the set of distributions @#* with the My(z.y) = 1n"({2" € Bn: foly | 2') > fo(y | @) or
weak topology and assume that for evérg © the mapping folyla') = fo(y| 2),&’ Zx}). (51)
x — pe(- | 2) is Borel measurable. This assumption is
equivalent to the assumption that for ahy © and any Borel Lemma 1. Notice that ifB,, is finite then Lemma 1 holds

setB € Y the functionz — py(B | ) from B, to R is even if YV is infinite: we did not assume thd¥ is finite in

measurable, see [30]. We can thus define the product measure . L
%,y n e proving that lemma. If, however,, is infinite then the proof
pe’” on B, x V" as the measure that satisfies

needs some modification as follows.

We can now state the continuous alphabet counterpart of

pe'(Ax B) = / pe(B | &) dp”(z) 47) Lemma 7: Given K canonical decoders that are based on
A the ranking functiong4,, , - - -, My, , and given any arbitrarily
for any Borel setsA ¢ B™, B C J". large numbetZ > 0, there exists a decoder, such that

_ An additional assumption that gregtly simplifies the analysis Py, (ertor) < K Py g, (error) + K2k
is that for every blocklength there exists a measureon )" i ’
with respect to which all the measures ViI<k<K, V6cO, vnz>1

{ps(-| ), 7 € B,,0 € O} Note that when we apply this lemma we typically choose
' ’ ’ ' L = L(n) with L(n) — oc in order to avoid a loss in the
are absolutely continuous. We shall denote foyy | ) the error exponent.

Radon—Nykodim derivative of the measupg(- | z) with Proof: To prove the lemma divide the unit interval 1]
respect tov at y, i.e., into 27(Z+R) disjoint intervals of lengtl2—"(E+7)
dpe(y | Iy =0, 277(A+R)
fe(?l|$)=%- o= LR] L+R L+R
v Ly = (m27 R (4 1)27 AR g <y < 20 UEHR)

This assumption is somewhat restrictive as it rules ou . .
channels like the channel where the inptitand outputy’ wthereR is the code rate. Consider now the merged decoder

are real andt” = X + Z where Z is independent noise thatthat f(_)rms 'tS_ deC|_S|on bas_ed on t_hle observagorin the
. . following way: It first considersM, ~(ly,y) N C. If this

takes value in the integers. We shall later remark on how suc : 1 ;

IS nonempty, it declares that the transmitted codeword was

channels can be treated.

The final assumption we make is th?eitadmitsameasurablethe codeword that ranks highest (according/,) among

total ordering, i.e., a total ordering such that the set of all My, (Io,y) N C. Otherwise, if M, “(Io,y) N C = 0, the

. —1 . . .
predecessors af is a measurable set. A typical input alphab ﬁcoder %Oni'_dirﬂ@ (Ilg_a y) N g If tg's IS r(lj(_)nempty, dlt
that satisfies this assumption 8¢ with the ordering taken chooses the highest ranking codeword accordingfig, an

to be lexicographical with the standard orderinglin (i.e., Ctherwise conS|derM0;1(I_0,y_)mC,letc. If a decision has not
r =< oz <) been reached after consideriig, (lo,y) NC, the decoders
We can define ranking functions in much the same wapnsidersi, *(1:,y) N C followed by M, *(1,y) N C etc.

that we did for finite alphabets, except that if the input sets ASsume now that transmission is carried out over the
B,, are infinite then we prefer to deal with canonical rankinghannelps(y | ) and letl < k < K be arbitrary. We shall
functions. We define a canonical ML decodgs for the Now compare the performance of the merged decagewith
channelp,(- | ) as a decoder that given a received sequenéiat of g, , the ML decoder tuned tpy, (y | ). We thus need

y and a codebook declares that the transmitted codeword & comparely ,,, (error) with F g, (error). Hold the received

z(i), i.e., poly) = i, if sequencg and the correct codewotelfixed, and assume that
giveny the decoderpy, rankse in I,,, i.e.,
My (2(i),y) < Mo(2(5),9), Vi #i z € My (In.y)
where the ranking functionV/s(-,-) satisfies the following The decodet;x makes an error only if some codewattllies
conditions: in an interval higher thaw in one of the listsMy, ,---, Mg,
ie., if
My : B, x Y" — [0,1]; (48) el K
/ —1
for anyy € Y™ the mappingM (-,y) is measurable; r e U U MOV (L, 4) (52)
m/'=0k'=1
pE(MH(0,0),4) =a, Ya€0,1], Yy Y™ (49) or if some codeword: lies in the same interval as in one
of the lists My, ,---, My, i.e.,
and K
, : @ e | My (Ln.y)-
foly [ 2) > fo(y | 2') = Mo(z,y) < Mo(2',y).  (50) oo e

Notice that there always exists an optimal decoder which \l8e denote the former event i, and the latter by¥>. Notice
canonical. Indeed, i is the total ordering o’ extended to that £; U E5 is a necessary condition for an error but not
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sufficient, because of the order in which the decoders awemerge the canonical ranking functions. A good candidate

merged. for Ny(y) is the singular part of the decomposition of the
We first analyze the probability of the eveht by noting a posteriori probability on B,, given y with respect to the
that uniform measure:” on B,,.
K To study strong universality for infinite alphabets we need
Pr(Es | z,y) < Y (12"%] = )" (M ! (1, 9)) the following lemma which is the continuous alphabet coun-
k=1 terpart of Lemma 5:
nR —n(R+L
- K(LZ I= 1)2 () Lemma 8: Let #',6” € ©, and letC be a rateR, block-
< K27 length+ codebook such that for every codewaed= C there
and hence exists a setr;, C V" such that
Pr(Ey) < K27 (53) / for(y | x)dv < 27M
y¢F:

where the first inequality follows from the union of events
bound and the second from the fact that all the rankinagfl
functions under consideration are canonical.

As to the eventE; we note that the probability that’ Joylz) <2 fer(y|x), VY€l
satisfies (52) is, by the union of events bound and the fact that
the rankings are canonical, upper-bounded by Then for any decodey
m—1 K Py g(error | C) < 27 Py y(error | C) +27M,
Pr(z e | U M ) ’ ’
e e o MEmH Y Also,
m/=0 k' =1 — —
< sz—n(L-l—R) P9/79/(er1‘01‘) < 2n€P9H79H(eI‘I‘OI‘) + oM,
P . —1/: .
< KPr(My (z'.y) < My (x, Proof: Let D, = ¢—'(¢) be the set of received sequences
- (Ms, (=',9) o (29)) that are decoded by to messagé, wherei = 1,---, [2"8].

where all probabilities are, or course, conditional@andy, \\e then have
and where the second inequality follows from the assumption

that ¢, ranksz in I,,,. Noting that P g(error | C)

[2"7)
Pr(Ey |2,y 1 ,
(&1 ) . - = 2oF] > /DC for(y | (i) dv
m— 44 =1 i
=1- <1 —Pr <a:’ € U U Mk}(Imr,y)>> 1 |27#]
g m/=0 k=1 < (277 ] Z [/D - fo(y | 2(3)) dv
i=1 TN (o)
Pr(error | 2,9, ¢s,)
nR—1 + / Jo(y | 2())dv
=1- (1 - Pr(MHk (Z./vy) < Mﬂk (.T, y)))2 F;(i)
we can use Lemma 2 to conclude that 1 [2"7)
_ —nM ne -
Pr(E,) < K Py 4, (error). (54) =270 Ger] > / e 2 Jor(y | 2(0)) dv
i=1 i »(4)
Inequalities (53) and (54) now prove the lemma. O |27

1 .
Note: We used the assumption that there was a measure < 27" + 277 Z / 27 for(y | 2(4)) dv
v with respect to which all the measurdgy(- | @)} are i=1 7P}
absolutely continuous to demonstrate that every ML decoder = 27"M  27<P,, ,(error | C)

is equivalent to a decoder that is based on a canonical rankjpgicn proves the first part of the lemma. The second part

function. In the more general situation when we do not hayg s from the first part by choosing to be the ML decoder
an underlying measure with respect to which all output ., 6", by noting that by the optimality of the ML rule
distributions are absolutely continuous, one can often define

Py g (error | C) < Pyrgr(error | C)

an ML decoder for the channdl in the following way. To
everyy € Y™ one assigns a measurable 8&{y) C B,, with and by averaging over the codebo®k O
measureu®(Ng(y)) = 0 such that the ML decoder operates

as follows. IfC N Ne(y) # 0 it declares that the codeword . . - .
in C N Ny(y) was transmitted. Otherwise, & N Na(y) = 0 bet.s.' Nouce that, when ap_plleq to'flnlte alphqbets, .thIS new
o ; . ) . definition of strong separability is slightly more inclusive than
the decoding is performed using a canonical ranking functioq. .. ..
. o . IEéefmmon 6.

Since Ny (y) has measure zero, the probability of an incorreC

codeword being inVy(y) is zero. If this is indeed the structure Definition 7: A family of channels{ps(y | ) ¢ € O}
of the optimal receiver then merging of the receivers correefined over common general input and output alphabe{s
sponding tofd,,---,8x can be performed by first checkingis said to bestrongly separabldor the input setsB, C X"

whether there is a codeword iff_, Ny, , and then proceeding if there exists somel > 0 that upper-bounds the error

We can now define strong separability for general alpha-
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exponents in the family, i.e., that satisfies A. Discrete Memoryless Channels

) 1. 2 Consider the case where the family of channdlsis
hfiso‘ipi‘ég_ﬁbgP”(ermr) <M (55) the family of all discrete memoryless channels (DMC's)
over the finite input alphabet’ of size |t'| and the finite
output alphabet) of size |Y|. This family of channels is
parameterized naturally by the set of pif| by | V| stochastic
matrices. We shall thus take this set of matrices as our
parameter spac® and have

such that for anye > 0 and blocklengthn, there exists a
subexponential numbeik(n) (that depends od/ and one)

of channels{6™}X") ¢ @, such that for any € © there

existse,(ﬂ) € 0,1 < k* < K(n) that approximate# in the
following sense.

n

* For everyz € B, there exists a measurable 96ty C
yn such that ! p@(y | .’l‘?) = H e(yt | xt)
t=1
—nM
/y¢F ) Joly | @) dv <2 (56)  \whered(y | =) denotes the entry in row and columny of the
- matrix 6, and wherex = (z1,---,2,), andy = (y1, -, Yn).
and To simplify notation we are thus identifying the sét with
Joly | ®) <27 fon(y | T). (57) the set{l,---,|X|} and likewise for).

« For everyz € B, there exists a measurable set Lemmg 9 The family of all discrete memc_)ryless channels
F, ,» C V" such that over the finite mpu.t .and output alphabets) is s_eparable in
RS the sense of Definition 5 for any sequence of input g€&ts

Proof: Since the channels in the family are memoryless

fyo(y | @) dv < 277N (58)
/ﬁFz,egy o~ we have

and

po(yle) 110 (ye | 2e)

< 0y | x) )"

max —_— .
(mwexxy &' (y | x)
We thus conclude that

2 loe pe(y | )
po(y| )

Fooo(y | 2) <27 fo(y | ). (59)

We now state the main result on universal decoding for
general alphabets:

IA

Theorem 5:If the family of channels{ps(y | 2),0 € ©}
is strongly separable in the sense of Definition 7 and if it
satisfies the assumptions preceding Lemma 7 then it admits n
a random-coding and deterministic-coding strong universal . o I
. : and the required separability now follows by considering
decoder. If© can be written as a countable union of strongly ) ; . :
. . . . he countable set of all stochastic matrices with rational
separable families then the family admits a random-coding an . ! : .
S . : nonnegative (but including zero!) entries. O
deterministic-coding weak universal decoder.

Proof: The first part of the theorem follows from Lem- Lemma 10: The family of all discrete memoryless chan-
mas 7 and 8 in much the same way that Theorem 2 followmgls over finite input and output alphabets ) is strongly
from Lemmas 1 and 5. To prove the second part of the theorseparable in the sense of Definition 6 for any input $éis}.
note that if Proof: Let M > 0 be a strict upper bound on the random-

0 coding error exponents of all the channels in the family of
0= U et DMC'’s over the alphabet’, ), e.g.,M = 1 +log|X|. By the
m=1 discussion following Definition 6 this choice @ff guarantees

and {uiV )50, is a(s?quence of strong random-coding unfhat (10) holds. Let
versal decoders fap'”*’ then the decodeit,,, the results from r_ )
merging uél),---,uﬁl"), is random-coding weakly universal M’ =M +log|V|
for ©. Deterministic-coding universality can be proved bynd ¢ >~ 0 be given, and assume for the simplicity of
methods similar to those employed in the proof of Lemma dptation thatAl’ /e is an integer. Let the blocklength under
by enumerating the union of all approximating channelgonsiderationn > 1 be fixed. The idea of the proof is to
where the union is over the blocklengths and over the guantize the set of all stochastic matrices by quantizing each
spacesd(™). L' component logarithmicall§. Some cells will be empty, i.e.,
contain no stochastic matrices. From those cells that are not
VII. EXAMPLES empty we choose an arbitrary representative. Special care must
In this section we shall consider different families of charPe taken in treating cells in which one of the components
nels and study their separability properties. We shall alsé@ntains the elemerit. The details follow.
demonstrate by example that there are some families of o . -
. . . The proposed quantization is different from the uniform quantization that
channels that admit weak universal decodmg but not Stro@g)ften used to prove capacity results [16, p. 216], [14]. The finer analysis is
universal decoding. required because of our interest in error exponents.

0y | )
8 By o)

< max
T,y
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Divide the intervall0, 1] into 1 + nA’/e disjoint intervals, B. Finite-State Channels

Lo, -+ Inpgr /e, Where We next consider the family of all finite-state channel that
Iy =0, 2—nM’] (60) are defined over common finite input, output, and state alpha-
I = (2_((an/€)_l+1)e7 2_((an/€)_l)€]7 1< 1< nMfe. _bets/‘_\’,y,S_, re_spectlvely. T_he probability Ia_vy of any chanln_el
in this family is characterized by a conditional probability
(61) assignment
Notice that except for the intervdl, all the other intervals
have the same ratio between their endpoints, and this ratio
is 2¢. Thus and an initial state, € S. Operationally, if at timeg — 1 the
state of the channel is;_; and the input to the channel at
time ¢ is z;, then the output of the channg| at time¢ and

Consider now the component-wise quantization induced H}f States: of the channel at time are determined according
the partition (60) and (61) on the set of dit| by || © the distribution

matrices with )elgments if0, 1]. This q'uantizatioln results iq Po(ur, st | e, Se-1).

(1 4+ nM’/e)I¥I¥l cells, some of which contain stochastic _

matrices and some of which do not. L§(x) be the number of FOr @ny input sequence and output sequengg of length»

Py(y,s | z,s), yeY zcX,s, 58

a,pel; and [#£0= <e. (62)

o
log —
ogﬁ

cells that contain stochastic matrices, and{&t", - - -,9;?()”)} we have that conditional on the initial statg
be a set ofi(n) stochastic matrices representing those cells poy |z, 50) = > pe(y, 8|, 50) (63)

containing stochastic matrices, one from each cell. Since the scS”
total number of cells is polynomial in the blocklengthit \yhere
follows that K'(n) is subexponential.

Given any stochastic matrig, let 9,(;1) be the stochastic po(y, 8| 2, 50) = HPg(yt,st | 4, 50—1) (64)
matrix that represents the cell in whiéhies. It follows from t=1
(62) and (60) that for anfz, y) € &' x Y at least one of the gnqg — (5, s,) € 8. Itis helpful to think of the family
following conditions holds: of finite-state channels as being parameterized fhy,) €
6(y | z) © x S because the probability of an output sequepa@gven
10gm an input sequence is determined by the initial statg, and
kA&

or by the probability assignmer® (y, s’ | z, s).

) Lemma 11: The family of all finite-state channels over the
max {(y | z), 0 (y | z)} <27 finite input, output, and state alphabets), S, respectively,
is separable in the sense of Definition 5 for any sequence of

depending on whetheéi(y | =) (and hence.‘),(ﬂ) (y | ) lies in input setsB,,.
I, or not. Notice that this condition is symmetricdrand6.”. Proof: It follows from Lemma 2 and from (63) and (64)

We shall next verify that this condition implies (12). Bythat for any input sequencg, output sequencg, and initial

symmetry, this will also imply (13). Letr = (zy,---,z,) Stal€so € &
andy = (y1,---,yn) be given. f8(y- | z-) € Iy for some Po(y |, 50) _ Dscsm Pe(y,8] % 50)
1 < t* < n then per (Y | &, 50) ZSES por(Y,8 | T, 50)
- It Polye, st | @, 50-1)
x) = 0 T < max ==
pe(y | x) tl;[l (e | z4) S Y T T
" / ! n
< Oy | @) S( ey Lo |a:,s)> .
< 9-n(M-+og V) oy Pyl [, 5)

king the logarithm of the above equation and considering the

. . T
and we have nothing further to check, as (12) is Sat'Sf'%(ime argument applied tband ¢’ in reverse roles we obtain

trivially. If, however,8(y, | z:) ¢ Io, for for everyl < ¢ <mn,

1 P 1! ! /
then by (62) max L[log ZZW1E50) | o g Dol |25
() zy N pe (Y| x,s0)| ~ sty Py (y,s" | 2,8
O(ye | ) < 20,7 (ye [ %),  VISt<nm (65)
and hence n The separability of the family now follows by considering
pely | z) = H9(yt ED) the countable family of channels?, (v, s’ | =, s), so) con-
puie} sisting of conditional distributions with (nonnegative) rational
n " components and allp € S. O
= tl:[l2 O (we | ) Lemma 12: The family of all finite-state channels defined

— one (y | z) over common finite input, output, and state alphal®ty’, S
= Py Y is strongly separable in the sense of Definition 6 for any input
and (12) holds. O sets{B,}.
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Proof: We shall fix the initial states, and show the Invoking Lemma 2 we have from (69) that
existence of a subexponential number of approximating chan-
nels for that initial state. Since the number of states is finite, 1),y 2scoPo(®,8 |, 50) <e (70)
the general result will follow by taking the union of the n Esegpgl(v’?(y?s | 2, s0)
approximating channels and initial states. lidt > 0 upper-
bound the error exponents in the family, say= 1+ log |X|,
and set

The complement ofj, denotedg©, is referred to as the set
of “bad” sequences. Since

M’ =M +log|V| +log|S| + 1. (66) po(y.8 [ &,50) SOy, 5t [ se-1,2e), VI<t<nm

Let the blocklengthn be fixed, as well as some¢ > 0, and we have by (68)
let 0 < e < ¢ be such thag-2"¢ < 2", To simplify notation o
assume thaf\/’ /¢ is an integer. max {ps(y, s | "3730)71’9;’3 (48| 2,50)} <2 , Vs ¢ g.
Any conditional probability assignment®;(y,s | s',x) (71)
can be represented by a matrix p¥||S| rows and|)||S| and since the number of state sequencegS|s it follows
columns. To simplify notation we shall use the matrix notatiofiom (66) and (71) that
O(y,s| s',z) for Py(y,s | s',z). As in the proof of the strong
separability of the family of DMC’s, we shall quantize this max { Z pe(y, 8| &, 50), Z Pyiry (y,8|x so)}
set of matrices component-wise on a logarithmic scale, as in s€gGe s€gGe
(60) and (61). Choosing stochastic matrices to represent the < 2~nMtleg V4D - (72)
cells (of which there are a polynomial number) that contain
stochastic matrices as in the proof of the strong separabilfg show that (12) holds for all sequenag andy we treat
of the family of DMC’s, we can conclude that for aflyc ® two cases:
there exists somé"” such that Case 1:

> ey, s | @, s0) <27 MHIFes VD, (73)
sCG

| Oy, s| s @)

<, V(y,s,s,z) e G (67)
6y, s | )

and In this case, it follows from (72) that

max {6(y, s | s, ), 007 (y, s | s )} <27M pe(y |, 50) = Z po(y, 8|, 50) + ZP&(?LS | , s0)

v "2 ¢ G (68 scge scG
(y,5,5,2) ¢ G (68) < 9-n(M+14log VD) | o-n(M+1+log| )

where the set? corresponds to components of the ma#ix X
< g—n(M+log|V])

that do not fall in the intervaly, i.e.,

G={(y,s,8,2):0(y,s|s,z) ¢ Lo} and for suche,y (12) holds in the trivial sense.

Notice that becausé and 6" are in the same cell we also ©@S€ 2: The sequences andy are such that

have > poly,s| @ s0) 2 27D (74)

s€@
G=1(y.s5,2): 6 (ys|s z) ¢} <
{ ) Bielws | ) # 1o} and hence, by (70)
Conditions (67) and (68) are thus completely symmetric with Zpew Y, | z,50) > 272~ (MH1Flog V), (75)

respect to interchangir@ande,if) and thus it suffices to show Py
that these conditions imply (12), because (13) will then foIIovg

by symmetry. or such sequences (12) holds because

Given an input sequence = (z1,---,,), an output pe(y | 2, 50)
sequenca = (y1,- -+, ¥n), and an initial state,, we define Py (¥ | T, 50)
i
G={s8e€S8":(yt,5,5-1,%) EG, V1<it<n}  2scePey,8|®,50) + D 46 Pe(y, 8| T, 50)

2 scg Pyt (88 | 2.50) + 2 gcge Py (8,8 | &, 50)
Zseg pe(y, s | z, 80) + 27n(]\4+1+log (N%))

Zseg pgij;) (y,s| %, 50)

o—n(M+1+log |V])

Thus ¢ is the set of “good” state sequences in the sense that
for every component we have that <

e(ytvst | Stflvxt)

‘ 927})(yt73t | Stflvxt)

< € < 2ne +
- Esegpgl(\z) (?],3 | x, 30)
and hence < 2%,"‘ 2"
S 2ne
1 p y? S m? s . . .
[l % <e, Vseg. (69) where the first inequality follows from (72), the second from
Doy, 81, 50 (70), and the third from (75). O
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In the above derivation we have assumed that the humbeffo establish strong separability first note that by analyzing
of states|S| is known to the receiver designer. In fact, onlthe two-codewords case one can determine that
an upper boundS on the number of states is required, as _
every finite-state channel witf$| states can be described as Phn(error) > Q(vnH(J +1)P) (77)
a finite-state channel with > [.A| states by duplicating someyhere, see [34, eq. (2.3.18)]
of the states. Note, however, that the rate of convergence of

the universal decoder depends significantly on the number of Q(B) = 1 /Oo € /2 de
states, and designing the receiver to account for more states Var Jg
than the channel really has results in poor rates of convergence. 1\ e—8%/2
. . - I _ H ” = 1 - 55 . (78)
This problem can be solved by designing a “double-universal 32 ) 2

decoder. Here we desigh+ 1 universal decoder&ﬁg{’)};’ﬁ:1 ] ) )
for each of the possible number of states= 0,---, S, This follows from a simple energy calculation and the

and then merge thé + 1 decoders to obtain the double-Cauchy—Schwartz inequality by noting that
universal decoder. The double-universal decoder now has a 2

— n J n J J
rate of convergence which is at mast 1 worse than that of h 2 2
. ; Ty < hs Ty .
the universal decoder that could have been designed had the ; EZ:O s - ; = J ;::0 b
number of states been known in advance. < nH(J +1)P
<n g

This approach is the dual of the twice-universal source
coding approach of [32] and [33]. It follows from (77) and (78) that the error exponents of the
If the number of states is completely arbitrary, then stronghannels in the family are bounded and
universality cannot be guaranteed, and we can only guarantee 1
weak universality. The latter can be guaranteed by merging M = ZH(J+1)Plogy(e) +1 (79)
uglo),~~~,u5l"(")) decoders where/(n) is subexponentially 2

increasing in the blocklength, angh!’} is universal for a Satisfies (55). o _ _ _
finite-state channel withs states. The following lemma, which is proved in Appendix 11, will

be useful in establishing strong separability.

C. Intersymbol Interference Lemma 13: Given two sets of ISI coefficients

In [21] Merhav posed the problem of designing a uni- B = (R}, 1)
versal decoder for the discrete-time Gaussian channel with B — (B )
unknown intersymbol interference (ISI) coefficients. The input A

and output alphabets are both the real line, and and somee satisfying 2? < nP
! J 2 J 2
Y, =Y X+ 27 1 &
n t=1 =0 j=0
where h = (ho,---,hy) is the vector of unknown ISI co-

efficients, and{Z,} is independent of the input and is a < VP(J+ Dllh—K[2(2v/Q +|lh— k|2\/P(J + 1))
sequence of independent Gaussian random variables of 2819 e
mean and unit variance. We shall next demonstrate that if the

ISI coefficients satisfy an energy constraint of the form (14), J 1z
and if the input setB,, satisfy an average power constraint |lh— k|2 = Z(h’j — I )2
(15), where.J, H, and P are all known, then the family is §=0
strongly separable and a strong universal decoder exists by Q = min{Q’,Q"}
Theorem 5. IfJ and H are unknown then we can consider ' ' 2
the countable union of ISI channels over all integérand H , I ‘L,
to obtain a weak universal decoder for the case whieemd Q= n Z Yo — Z Ry o (80)
H are unknown (but finite). =t =0
In this problem the output distribution corresponding to an‘i‘/nOI )
input z and any ISI sequende is absolutely continuous with 1M J
respect to the Lebesgue measure with density Q"= - Z Y — Z h’j’xt_j . (81)
5 t=1 j=0
1 . 1 3 We are now in a position of prove the strong separability
fuly | 2) (2m)n/2 11_11 Py T\ # ;hﬂxtﬂ of the family. GivenM as in (79) we can find, by the Large
6) Deviations principle [35], some sufficiently large so that
s : 1 = 2 —nM
where we are defining, = 0 for ¢ < 0, and we are using Pr{— ZZt > Q} <2 (82)
rather thar¥ to parameterize the family. et
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where{Z;} are i.i.d. Normal random variables of zero mean It is interesting to note that the number ®&balls required
and unit variance. Given any > 0 we can find by Lemma to cover theH-ball does not grow with the blocklength.
13 and (76) some sufficiently small>> 0 (which depends on This leads us to suspect that for this family the convergence
€, Q, .J, P, and H) so that of the performance of the universal decoder to that of the ML
decoder is very good.

The convergence does, however, depend significantly on

! 1
IR = h7l2 < 8 (83) the number of ISI coefficients. Using the previously discussed
“double-universality” approach (see Section VII-B), one can,
implies however, guarantee that the rate of convergence be essentially
determined by the number of ISI coefficients, even if only an
Zllog Jwly|z) <e (84) upper bound on that number is given.
n| " fu(y|x)

whenevery 2 < nP and D. A Pathological Example

The following is an example that demonstrates that some

9 families admit weak universal decoding but not a strong one.
_ 1 & ol ) The example is really the binary-added arbitrarily varying
i o Z Yt — Zhﬂ?tﬂ' ) channel (AVC) in disguise; see [36, p. 189, Example 1] and
t=1 i=0 references therein.
2 Consider the family of channels with binary inputs and

binary outputs (i.e.X = Y = {0,1}) that is parameterized
by ©, where® is the countable set of all half-infinite binary

S|
M:
=
|
M%
=
&
J
A
QO

=t =0 sequences that have a finite number of onesgfet9 ...
denote the binary sequence corresponding &0, and let
We now choose the griﬂi"), . -,hf,?()n) to guarantee that
. . n) . 1, ify=2z®6
for every h satisfying (14) there exists somhi* N A pe(y | x) = ;
0, otherwise.
K(n), such that
h— B 5 Thus if the sequence = (z1,---,x,) € A™ is transmitted
1R = R, < through the channel of parametgr= 61, 6(?) ... then the

resulting output igy € Y™ where
with K (n) subexponential. This can be clearly done because

any ball of radiusH in R’*! can be covered by g 6D o

J+1
GL V]HD and ¢ denotesmod-2 addition (exclusive or).

6 Every channeby(y | ) has capacity 1 bit, and if random
coding is carried out uniformly over the set of input sequences
balls of radiuss as can be easily verified by considering thwith an equal number of zeros and ohélsen the resulting
size of the smallest cube containing tHeball, and the largest error exponentis—£, for0 < R < 1 (see [11], [16]), because
cube contained in thé-ball. if 8 is known then for all practical purposes the channel
Given any|h||, < H let hgj) be such that pe(y | ) behaves like a noiseless binary-symmetric channel.
Since the parameter spa€eis countable it is separable, and
Theorem 1 guarantees the existence of a deterministic-coding

Hh - h;fl) , <0 and random-coding weak universal decoder for the family.
Yet one can easily show using standard techniques from
For anyz satisfyingS""_, 22 < nP let the theory of arbitrarily varying channels [31], [37], [36, p.
185, eg. (3.15); p. 189, Example 1] that for any cadéwith
more than one codeword) and any decogdéhat is ignorant
1 & J 2 of the channel over which transmission is carried out, the
Iph=<y:— Z Y — Zhjxt_j <Qs. average probability of error, maximized over the parameter
i §=0 8, is bounded from below byt /4. There is thus no way to

achieve uniformly good performance over all the channels in

the family, and a strong deterministic-coding universal decoder

This choice guarantees that (56) holds by (82), and that (Jfges not exist for this family. In fact, by [36, p. 189, Example
holds by (84). The second requirement of Definition 7 follows

by a_Sim“ar argument. This establishes the Strong Separabi"tyThis is the choice for even blocklength For oddn we can take those
of this class of ISI channels, and Theorem 4 is thus provetsequences where the number of ones exceeds the number of zeros by
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1] there does not exists a strong random-coding univergab], and we denote them b¥(R). Thus
decoder for this family either.

Py (error) = P y(error) & e ER).

VIIl. SUMMARY AND CONCLUSIONS

In this paper we have demonstrated that for many of theConsider now a training sequence approach to the problem
families of channels that are of interest in wireless commuwhere each block of length begins with a training sequence
nication the ignorance of the receiver of the channel in usé length m followed by n — m unknown symbols that
is not a fundamental impediment for reliable communicatioconstitute a codeword of length-m from a random codebook
The receiver can employ the proposed universal decodingth |27#| codewords. The resulting code, consisting of the
algorithm to asymptotically perform as well as the maximuntraining sequence and unknown symbols is thus of date
likelihood decoder tuned to the channel in use. and blocklength:. The decoder decides which channel in the

These results easily extend to multiple-access channénily is in use by counting the number of bit inversions
Consider an/-to-one multiple-access channel (MAC) wherén the training sequence, and subsequently uses minimum
user: draws its codewords independently and uniformly overr maximum Hamming distance decoding for the unknown
a setB,(f) C X(’z), whered(,) is users’s (finite) input alphabet, symbols accordingly, depending on whether more than a half
1 < < I. A receiver for such a channel can be described I®f the training bits were flipped or not.
specifying a ranking ofBr(Ll) X oo X Br(LI) for each possible To analyze the performance of the training sequence ap-
received sequencg € )", where) is the output alphabet. proach, let us break up the overall probability of error depend-
The idea of merging decoders extends straightforwardly to tif§ on whether the decoder correctly identifies the channel or
MAC, as do most of the results of the paper. With these todt. By Bayes' rule
we can thus demonstrate the existence of universal decoders
for fairly general multiple-access channels with memory, thus
extending the results of [38] and [39] on universal decoding
for memoryless multiple-access channels.

The penalty for not knowing the channel seems to be in
complexity. The universal decoder proposed in this papeis fairly straightforward to see that as—m tends to infinity
might, and often does, have a complexity that is much highgre probability of error under mismatch conditions tends to one
than that of the maximum-likelihood decoder. Particularlyg]. Likewise, asm tends to infinity, the probability of correct
since the universal decoder is based on ranking functions agdntification Pr(correct id.) tends to one. Thus
the idea of merging, it is required, for any given received
sequencey, to compute the ranking of each codeword among
all the possible sequences € B, according to each of
a polynomial number of channel laws. This can result in
formidable complexity particularly if the cost of evaluatingand the fact that the training sequence approach does not
pe(y | x) is high, as is the case for finite-state channels wheygeld a universal decoder now follows by noting that, by the
it is exponential in the blocklength (63). large deviations principle [35], for the probability of incorrect

The existence of universal decoders motivates the searchitf¥ntification to decrease exponentiallysinthe length of the
decoders that are not only universal but also computationaifgining sequence: must grow linearly inn.
efficient. Some promising results in this direction have been
recently reported in [29] and [40].

P, = Pr(correct id.) Pr(error | matched dec.)

+ Pr(incorrect id.) Pr(error | mismatched dec.).

P, = Pr(error | matched dec.) + Pr(incorrect id.)

APPENDIX Il

APPENDIX | In this appendix we give a Proof of Lemma 2. We start with
. . . the first claim of the lemma. First note that the functibfx)
In th.|s app_endlx we demonstrate by a simple exam_ple th|":sléemonotonically increasing in the interv@, 1], and the case
the naive training sequence approach to communicating OVeL . thus proved. Consider now the case £ Observe
unknown channels does not, in general, yield a univer%ﬁl— b : : . ==
. ; . at for any N > 1 the function f(z) is concave inz for
decoder. Consider the simple case where the family of chaH1-< » < 1, and thatf(0) = 0. Thus by Jensen’s inequalit
nels F consists of only two channels, a BSC with crossovg(r)r—a;1 0 < o < 1 and arT 0.< < 1y q Y
probability 0.25 and a BSC with crossover probability75. YOS as Ws2s
We denote the first law by, (y | ) and the latter by (y | z).
Clearly, the ML decoding rule for the first channel is minimum flaz) = flaz+ (1 — a)0)
Hamming distance decoding, whereas the rule for the second > af(2) + (1 — a)£(0)
is maximum Hamming distance decoding. Assuming that B af(2)
random-coding is performed so th&2"#| codewords are oV
drawn independently and uniformly over the set ofralength
sequences with an equal number of zeros and ones, we h@mosingae = t/s and z = s now concludes the proof of

that the resulting random-coding error exponents are identithis part.
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A proof of the second part of this lemma can be found in
[41, Lemma 1]. Note, however, that we have chosen to define
0/0 = 1 whereas it is defined a8 in [41]. It is, however,
straightforward to verify that the results still hold.

The third claim of the lemma is trivial because it holds
point-wise and must therefore also hold in expectation.

APPENDIX Il

The Proof of Lemma 13 is based on repeated application of
the Cauchy—Schwartz inequality: Let

2
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571/2
n J

2o 20—

t=1 j=

h;l).’L't_J

57 1/2
n

J
<2 Z Yt — Zh;'xt—j
=0

t=1

(89)

+V I+ 1B = K||2VnP. (90)

Recalling the Definition (80) of)’ we have

A< VP +1) - B =Kl
-2/ Q' + B = K |2/P(J +1)).

(91)

2 By symmetry we also have

j=0
1 - - 1" !
=S (S mn
t=1 \ j=0
J

x | 2y — Z(h/j/ + h)w_;
=0
1/2 1/2
<=

> o} 67
t=1 t=1

where the last step follows from the Cauchy-Schwartz in%

equality with
5 (3]
J
of = Z(h;{ - h})ﬂ?t—j [4]
=0
J [5]
< | Dk = hy)? Zaz? ; (85)
=0 (6]
and 7]
4 : [8]
B = |20 = D (W + Wwe
7=0
) El
J
= 2 Ut — Zh i Lt—j + Z — h// .’L’t —j (86) [10]
” [11]
We thus have from (85) 12
" 1/2 " 1/2
<Z a3> <VIF 1R = ¥|2 <Z x§> (3]
t=1 t=1
=VJ 1| — K |]2v/nP @87) 4
and by the triangle inequality ne
[16]
n 1/2 n J 2] 1/* [17]
(S) =2l (n-Xwen) | @
t=1 t=1 j=0 (18]

where " is defined in (81).
conclude the proof of the lemma.

AL VP +1)-||K =K
-(2VQ7 +||B" = K|]2/P(T +1))

Inequalities (91) and (92)
O

(92)
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